Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2015, Volume 21, Number 3, Pages 268–278 (Mi timm1218)  

This article is cited in 2 scientific papers (total in 2 papers)

A PTAS for the Min-$k$-SCCP in a Euclidean space of arbitrary fixed dimension

E. D. Neznakhinaab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (230 kB) Citations (2)
References:
Abstract: We study the Min-$k$-SCCP on a partition of a complete weighted digraph into $k$ vertex-disjoint cycles of minimum total weight. This problem is a generalization of the known traveling salesman problem (TSP) and a special case of the classical vehicle routing problem (VRP). It is known that the problem Min-$k$-SCCP is strongly $NP$-hard and preserves its intractability even in the geometric statement. For the Euclidean Min-$k$-SCCP in $\mathbb{R}^d$ with $k=O(\log n)$, we construct a polynomial-time approximation scheme, which generalizes the approach proposed earlier for the planar Min-2-SCCP. For any fixed $c>1$ the scheme finds a $(1+1/c)$-approximate solution in $O(n^{O(d)} (\log n)^{(O(\sqrt d c))^{d-1}})$ time.
Keywords: cycle covering of size $k$, traveling salesman problem (tsp), $np$-hard problem, polynomial-time approximation scheme (ptas).
Received: 13.05.2015
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2016, Volume 295, Issue 1, Pages 120–130
DOI: https://doi.org/10.1134/S0081543816090133
Bibliographic databases:
Document Type: Article
UDC: 519.16 + 519.85
Language: Russian
Citation: E. D. Neznakhina, “A PTAS for the Min-$k$-SCCP in a Euclidean space of arbitrary fixed dimension”, Trudy Inst. Mat. i Mekh. UrO RAN, 21, no. 3, 2015, 268–278; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 120–130
Citation in format AMSBIB
\Bibitem{Nez15}
\by E.~D.~Neznakhina
\paper A PTAS for the Min-$k$-SCCP in a Euclidean space of arbitrary fixed dimension
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2015
\vol 21
\issue 3
\pages 268--278
\mathnet{http://mi.mathnet.ru/timm1218}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468109}
\elib{https://elibrary.ru/item.asp?id=24156730}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2016
\vol 295
\issue , suppl. 1
\pages 120--130
\crossref{https://doi.org/10.1134/S0081543816090133}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394441400013}
Linking options:
  • https://www.mathnet.ru/eng/timm1218
  • https://www.mathnet.ru/eng/timm/v21/i3/p268
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :59
    References:38
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024