Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2016, Volume 22, Number 3, Pages 283–292
DOI: https://doi.org/10.21538/0134-4889-2016-22-3-283-292
(Mi timm1345)
 

This article is cited in 19 scientific papers (total in 19 papers)

Approximation Schemes for the Generalized Traveling Salesman Problem

M. Yu. Khachaiabc, E. D. Neznakhinaac

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Omsk State Technical University
c Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: The generalized traveling salesman problem (GTSP) is defined by a weighted graph $G=(V,E,w)$ and a partition of its vertex set into $k$ disjoint clusters $V=V_1\cup\ldots\cup V_k$. It is required to find a minimum-weight cycle that contains exactly one vertex of each cluster. We consider a geometric setting of the problem (we call it EGTSP-$k$-GC), in which the vertices of the graph are points in a plane, the weight function corresponds to the euclidian distances between the points, and the partition into clusters is specified implicitly by means of a regular integer grid with step 1. In this setting, a cluster is a subset of vertices lying in the same cell of the grid; the arising ambiguity is resolved arbitrarily. Even in this special setting, the GTSP remains intractable, generalizing in a natural way the classical planar Euclidean TSP. Recently, a $(1.5+8\sqrt2+\varepsilon)$-approximation algorithm with complexity depending polynomially both on the number of vertices $n$ and on the number of clusters $k$ has been constructed for this problem. We propose three approximation algorithms for the same problem. For any fixed $k$, all the schemes are PTAS and the complexity of the first two is linear in the number of nodes. Furthermore, the complexity of the first two schemes remains polynomial for $k=O(\log n)$, whereas the third scheme is polynomial for $k=n-O(\log n)$.
Keywords: generalized traveling salesman problem, NP-hard problem, polynomial-time approximation scheme.
Funding agency Grant number
Russian Science Foundation 14-11-00109
Received: 16.05.2016
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2017, Volume 299, Issue 1, Pages 97–105
DOI: https://doi.org/10.1134/S0081543817090127
Bibliographic databases:
Document Type: Article
UDC: 519.16 + 519.85
MSC: 90C27, 90C59, 90B06
Language: Russian
Citation: M. Yu. Khachai, E. D. Neznakhina, “Approximation Schemes for the Generalized Traveling Salesman Problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 3, 2016, 283–292; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 97–105
Citation in format AMSBIB
\Bibitem{KhaNez16}
\by M.~Yu.~Khachai, E.~D.~Neznakhina
\paper Approximation Schemes for the Generalized Traveling Salesman Problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2016
\vol 22
\issue 3
\pages 283--292
\mathnet{http://mi.mathnet.ru/timm1345}
\crossref{https://doi.org/10.21538/0134-4889-2016-22-3-283-292}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3555734}
\elib{https://elibrary.ru/item.asp?id=26530904}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2017
\vol 299
\issue , suppl. 1
\pages 97--105
\crossref{https://doi.org/10.1134/S0081543817090127}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425144600011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042152420}
Linking options:
  • https://www.mathnet.ru/eng/timm1345
  • https://www.mathnet.ru/eng/timm/v22/i3/p283
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:363
    Full-text PDF :109
    References:49
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024