Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2006, Volume 51, Issue 4, Pages 641–673
DOI: https://doi.org/10.4213/tvp18
(Mi tvp18)
 

This article is cited in 17 scientific papers (total in 17 papers)

On large and superlarge deviations of sums of independent random vectors under Cramér's condition. II

A. A. Borovkov, A. A. Mogul'skii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The present paper is a continuation of [A. A. Borovkov and A. A. Mogulskii, Theory Probab. Appl., 51 (2007), pp. 227–255]. In that paper we studied, in the univariate case, the asymptotics of the probabilities that a sum of independent identically distributed random variables will hit a half-interval $[x,x+\Delta)$ in the zone of superlarge deviations when the relative (scaled) deviations $\alpha=x/n$ unboundedly increase together with the number of summands $n$ and, at the same time, remain in the analyticity domain of the large deviations rate function for the summands. In the multivariate case, the first part of the paper presented sufficient conditions which ensure that integrolocal and local theorems of the same universal type as in the large and normal deviations zones will also hold in the superlarge deviations zone. The second part of the paper deals with the same problems for three classes on the most wide-spread univariate distributions, for which one can obtain simple sufficient conditions, enabling one to find the asymptotics of the desired probabilities, as $x/n\to \infty$, in the above-mentioned universal form. These are the classes of the so-called exponentially and “superexponentially” fast decaying regular distributions. For them, we also establish limit theorems for the Cramér transforms with parameter values close to the “critical” one. Moreover, we obtain asymptotic expansion for the large deviations rate function.
Keywords: large deviations rate function, large deviations, superlarge deviations, integrolocal theorem, semi-exponential distributions, superexponential distributions, characterization of the normal distribution, limit theorems for Cramér transforms, asymptotic expansions of the large deviations rate function.
Received: 22.12.2005
English version:
Theory of Probability and its Applications, 2007, Volume 51, Issue 4, Pages 567–594
DOI: https://doi.org/10.1137/S0040585X97982645
Bibliographic databases:
Language: Russian
Citation: A. A. Borovkov, A. A. Mogul'skii, “On large and superlarge deviations of sums of independent random vectors under Cramér's condition. II”, Teor. Veroyatnost. i Primenen., 51:4 (2006), 641–673; Theory Probab. Appl., 51:4 (2007), 567–594
Citation in format AMSBIB
\Bibitem{BorMog06}
\by A.~A.~Borovkov, A.~A.~Mogul'skii
\paper On large and superlarge deviations of sums of independent random vectors under Cram\'er's condition.~II
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 4
\pages 641--673
\mathnet{http://mi.mathnet.ru/tvp18}
\crossref{https://doi.org/10.4213/tvp18}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338060}
\zmath{https://zbmath.org/?q=an:05231418}
\elib{https://elibrary.ru/item.asp?id=9310055}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 4
\pages 567--594
\crossref{https://doi.org/10.1137/S0040585X97982645}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000251875600001}
\elib{https://elibrary.ru/item.asp?id=13558259}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38149072414}
Linking options:
  • https://www.mathnet.ru/eng/tvp18
  • https://doi.org/10.4213/tvp18
  • https://www.mathnet.ru/eng/tvp/v51/i4/p641
    Cycle of papers
    This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025