Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2006, Volume 51, Issue 2, Pages 260–294
DOI: https://doi.org/10.4213/tvp53
(Mi tvp53)
 

This article is cited in 14 scientific papers (total in 14 papers)

On large and superlarge deviations for sums of independent random vectors under the Cramer condition. I

A. A. Borovkov, A. A. Mogul'skii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We study the asymptotics of the probability that the sum of independent identically distributed random vectors is in a small cube with a vertex at point $x$ in the following two problems. (A) When the relative (normalized) deviations $x/n$ ($n$ is the number of terms in the sum) are in the analyticity domain of the large deviation rate function $\Lambda(\alpha)$ for the summands (if, in addition, $|x|/n\to\infty$, then one speaks of super-large deviations). (B) When the alternative possibility takes place, i.e., when $x/n$ is outside the analyticity domain of the function $\Lambda(\alpha)$. In problems (A) and (B) the asymptotics of the super-large deviation probabilities (when $|x/n|\to\infty$), just as the asymptotics of the probabilities of the “usual” large deviation in problem (B) (when $x/n$ is bounded away from the expectation of the summands and remains bounded), in many aspects remained unknown. The present paper, consisting of two parts, is mostly devoted to solving problem (A) for super-large deviations. In part I we present a solution to problem (A) in the general multivariate case. As the first step, we use the Cramér transform, which enables one to reduce the problem on super-large deviations of the original sum to that on normal deviations of the sum of the transformed random vectors. Then we use integrolocal or local theorems for sums of random vectors in the triangular array scheme in the normal deviations zone. The required versions of such theorems are contained in [A. A. Borovkov and A. A. Mogulskii, Math. Notes, 79 (2006), pp. 468–482] and in section 5. We also present in part I a scheme for solving problem (B), to which a separate paper will be devoted. In the case when the distribution of the sum is absolutely continuous in a neighborhood of the point $x$, we study the asymptotics of the respective density at that point.
Keywords: rate function, large deviations, super-large deviations, integrolocal theorem, triangular array scheme, Cramér transform.
Received: 21.12.2005
English version:
Theory of Probability and its Applications, 2007, Volume 51, Issue 2, Pages 227–255
DOI: https://doi.org/10.1137/S0040585X9798230X
Bibliographic databases:
Language: Russian
Citation: A. A. Borovkov, A. A. Mogul'skii, “On large and superlarge deviations for sums of independent random vectors under the Cramer condition. I”, Teor. Veroyatnost. i Primenen., 51:2 (2006), 260–294; Theory Probab. Appl., 51:2 (2007), 227–255
Citation in format AMSBIB
\Bibitem{BorMog06}
\by A.~A.~Borovkov, A.~A.~Mogul'skii
\paper On large and superlarge deviations for sums of independent random vectors under the Cramer condition.~I
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 2
\pages 260--294
\mathnet{http://mi.mathnet.ru/tvp53}
\crossref{https://doi.org/10.4213/tvp53}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2324202}
\zmath{https://zbmath.org/?q=an:1137.60011}
\elib{https://elibrary.ru/item.asp?id=9242423}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 2
\pages 227--255
\crossref{https://doi.org/10.1137/S0040585X9798230X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000248083200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34447577025}
Linking options:
  • https://www.mathnet.ru/eng/tvp53
  • https://doi.org/10.4213/tvp53
  • https://www.mathnet.ru/eng/tvp/v51/i2/p260
    Cycle of papers
    This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025