Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2006, Volume 51, Issue 4, Pages 674–690
DOI: https://doi.org/10.4213/tvp19
(Mi tvp19)
 

An exponential estimate for a wavelet density estimator

J. Gama, V. V. Yurinskii

University of Beira Interior
References:
Abstract: This article is dedicated to deriving an exponential inequality for the distribution of the $L^p$-norm of the discrepancy between a one-dimensional probability density and its wavelet estimator that uses thresholding. In the underlying multiresolution analysis, the scale function and the mother wavelet are supposed to have compact support. The exponential estimate obtained is akin to Bernstein's inequality for sums of independent random variables. It supplements the known bounds for the mean integrated risks. The proof exploits the near-independence of empirical approximations to the coefficients of the same multiresolution level that correspond to wavelets with well-separated supports.
Received: 05.09.2005
English version:
Theory of Probability and its Applications, 2007, Volume 51, Issue 4, Pages 595–608
DOI: https://doi.org/10.1137/S0040585X97982657
Bibliographic databases:
Language: Russian
Citation: J. Gama, V. V. Yurinskii, “An exponential estimate for a wavelet density estimator”, Teor. Veroyatnost. i Primenen., 51:4 (2006), 674–690; Theory Probab. Appl., 51:4 (2007), 595–608
Citation in format AMSBIB
\Bibitem{GamYur06}
\by J.~Gama, V.~V.~Yurinskii
\paper An exponential estimate for a~wavelet density estimator
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 4
\pages 674--690
\mathnet{http://mi.mathnet.ru/tvp19}
\crossref{https://doi.org/10.4213/tvp19}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338061}
\zmath{https://zbmath.org/?q=an:1127.62031}
\elib{https://elibrary.ru/item.asp?id=9310056}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 4
\pages 595--608
\crossref{https://doi.org/10.1137/S0040585X97982657}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000251875600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38149118996}
Linking options:
  • https://www.mathnet.ru/eng/tvp19
  • https://doi.org/10.4213/tvp19
  • https://www.mathnet.ru/eng/tvp/v51/i4/p674
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024