Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 110, Number 2, Pages 214–227
DOI: https://doi.org/10.4213/tmf962
(Mi tmf962)
 

This article is cited in 6 scientific papers (total in 6 papers)

Quantum dissipative systems. IV. Analog of Lie algebra and Lie group

V. E. Tarasov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Full-text PDF (255 kB) Citations (6)
References:
Abstract: The requirement of consistent quantum description of dissipative systems leads to necessity to go beyond Lie algebra and group. In order to describe dissipative (non-Hamiltonian) systems in quantum theory we need to use non-Lie algebra (algebras for which the Jacoby identity is not satisfied) and analytic quasigroups (nonassociative generalization of analytic groups). We prove that this analog is a commutant Lie algebra (an algebra, the commutant of which is a Lie subalgebra) and a commutant associative loop (a loop, commutators of which form an associative subloop (group)). We prove that the tangent algebra of an analytic commutant associative loop (Valya loop) is a commutant Lie algebra (Valya algebra). Examples of commutant Lie algebras are considered.
Received: 30.04.1996
English version:
Theoretical and Mathematical Physics, 1997, Volume 110, Issue 2, Pages 168–178
DOI: https://doi.org/10.1007/BF02630442
Bibliographic databases:
Language: Russian
Citation: V. E. Tarasov, “Quantum dissipative systems. IV. Analog of Lie algebra and Lie group”, TMF, 110:2 (1997), 214–227; Theoret. and Math. Phys., 110:2 (1997), 168–178
Citation in format AMSBIB
\Bibitem{Tar97}
\by V.~E.~Tarasov
\paper Quantum dissipative systems. IV.~Analog of Lie algebra and Lie group
\jour TMF
\yr 1997
\vol 110
\issue 2
\pages 214--227
\mathnet{http://mi.mathnet.ru/tmf962}
\crossref{https://doi.org/10.4213/tmf962}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1471684}
\zmath{https://zbmath.org/?q=an:0930.70018}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 110
\issue 2
\pages 168--178
\crossref{https://doi.org/10.1007/BF02630442}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XR12900002}
Linking options:
  • https://www.mathnet.ru/eng/tmf962
  • https://doi.org/10.4213/tmf962
  • https://www.mathnet.ru/eng/tmf/v110/i2/p214
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:787
    Full-text PDF :246
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024