Abstract:
Sedov variational principle, which is the generalization of the least actional principle for dissipative processes, is used to generalize the canonical quantization and von Neumann equation for dissipative systems. An example of the harmonic oscillator with friction is considered.
Citation:
V. E. Tarasov, “Quantum dissipative systems I.Canonical quantization and quantum Liouville equation”, TMF, 100:3 (1994), 402–417; Theoret. and Math. Phys., 100:3 (1994), 1100–1112
This publication is cited in the following 19 articles:
S. V. Sazonov, “Quantum Coherent States of a Microparticle in a Viscous Medium”, Bull. Russ. Acad. Sci. Phys., 88:2 (2024), 219
S V Sazonov, “Axiomatic quasi-classical quantization of particle motion in the dissipative media”, Laser Phys. Lett., 21:6 (2024), 065205
S V Sazonov, “Non-stationary quasi-classical states of a charged particle in a strong magnetic field under conditions of the dissipative medium”, Laser Phys. Lett., 21:3 (2024), 035201
S. V. Sazonov, “Quasiclassical quantization of the motion of a particle in the presence of a drag force proportional to the square of the velocity”, JETP Letters, 118:4 (2023), 302–308
Zhinan Zhao, Yujunwen Li, Wu Lei, Qingli Hao, “Modified Graphene/Muscovite Nanocomposite as a Lubricant Additive: Tribological Performance and Mechanism”, Lubricants, 10:8 (2022), 190
A. Makarenko, “Presumable applications of cellular automates with strong anticipation in quantum physics”, J. Phys.: Conf. Ser., 1251:1 (2019), 012031
G.M. Pritula, E.V. Petrenko, O.V. Usatenko, “Adiabatic dynamics of one-dimensional classical Hamiltonian dissipative systems”, Physics Letters A, 382:8 (2018), 548
Zorin A.V., “Operatsionnaya model kvantovykh izmerenii kuryshkina-vudkevicha”, Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Matematika, informatika, fizika, 2012, no. 2, 43–55
The operational model of quantum measurement of kuryshkin-wodkiewicz
Vasily E. Tarasov, Monograph Series on Nonlinear Science and Complexity, 7, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems, 2008, 521
V. S. Kirchanov, “Applying the Linblad equation to quantum dissipative systems”, Theoret. and Math. Phys., 148:2 (2006), 1117–1122
Rafael J. Wysocki, “Hydrodynamic quantization of mechanical systems”, Phys. Rev. A, 72:3 (2005)
Tarasov, VE, “Path integral for quantum operations”, Journal of Physics A-Mathematical and General, 37:9 (2004), 3241
Georgi Georgiev, Iskren Georgiev, “The Least Action and the Metric of an Organized System”, Open Syst. Inf. Dyn., 09:04 (2002), 371
R. J. Wysocki, “Quantum equations of motion for a dissipative system”, Phys. Rev. A, 61:2 (2000)
A. O. Bolivar, “Quantization of non-Hamiltonian physical systems”, Phys. Rev. A, 58:6 (1998), 4330
V. E. Tarasov, “Quantum dissipative systems. III. Definition and algebraic structure”, Theoret. and Math. Phys., 110:1 (1997), 57–67
V. E. Tarasov, “Quantum dissipative systems. IV. Analog of Lie algebra and Lie group”, Theoret. and Math. Phys., 110:2 (1997), 168–178
B. A. Arbuzov, “On quantum description of motion with friction”, Theoret. and Math. Phys., 106:2 (1996), 249–253
C. P. Dettmann, G. P. Morriss, “Hamiltonian formulation of the Gaussian isokinetic thermostat”, Phys. Rev. E, 54:3 (1996), 2495