Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1994, Volume 100, Number 3, Pages 402–417 (Mi tmf1658)  

This article is cited in 19 scientific papers (total in 19 papers)

Quantum dissipative systems I.Canonical quantization and quantum Liouville equation

V. E. Tarasov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
References:
Abstract: Sedov variational principle, which is the generalization of the least actional principle for dissipative processes, is used to generalize the canonical quantization and von Neumann equation for dissipative systems. An example of the harmonic oscillator with friction is considered.
Received: 25.05.1993
English version:
Theoretical and Mathematical Physics, 1994, Volume 100, Issue 3, Pages 1100–1112
DOI: https://doi.org/10.1007/BF01018575
Bibliographic databases:
Language: Russian
Citation: V. E. Tarasov, “Quantum dissipative systems I.Canonical quantization and quantum Liouville equation”, TMF, 100:3 (1994), 402–417; Theoret. and Math. Phys., 100:3 (1994), 1100–1112
Citation in format AMSBIB
\Bibitem{Tar94}
\by V.~E.~Tarasov
\paper Quantum dissipative systems~I.Canonical quantization and quantum Liouville equation
\jour TMF
\yr 1994
\vol 100
\issue 3
\pages 402--417
\mathnet{http://mi.mathnet.ru/tmf1658}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1311898}
\zmath{https://zbmath.org/?q=an:0861.70008}
\transl
\jour Theoret. and Math. Phys.
\yr 1994
\vol 100
\issue 3
\pages 1100--1112
\crossref{https://doi.org/10.1007/BF01018575}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QP25500009}
Linking options:
  • https://www.mathnet.ru/eng/tmf1658
  • https://www.mathnet.ru/eng/tmf/v100/i3/p402
  • This publication is cited in the following 19 articles:
    1. S. V. Sazonov, “Quantum Coherent States of a Microparticle in a Viscous Medium”, Bull. Russ. Acad. Sci. Phys., 88:2 (2024), 219  crossref
    2. S V Sazonov, “Axiomatic quasi-classical quantization of particle motion in the dissipative media”, Laser Phys. Lett., 21:6 (2024), 065205  crossref
    3. S V Sazonov, “Non-stationary quasi-classical states of a charged particle in a strong magnetic field under conditions of the dissipative medium”, Laser Phys. Lett., 21:3 (2024), 035201  crossref
    4. S. V. Sazonov, “Quasiclassical quantization of the motion of a particle in the presence of a drag force proportional to the square of the velocity”, JETP Letters, 118:4 (2023), 302–308  mathnet  crossref  crossref
    5. Zhinan Zhao, Yujunwen Li, Wu Lei, Qingli Hao, “Modified Graphene/Muscovite Nanocomposite as a Lubricant Additive: Tribological Performance and Mechanism”, Lubricants, 10:8 (2022), 190  crossref
    6. A. Makarenko, “Presumable applications of cellular automates with strong anticipation in quantum physics”, J. Phys.: Conf. Ser., 1251:1 (2019), 012031  crossref
    7. G.M. Pritula, E.V. Petrenko, O.V. Usatenko, “Adiabatic dynamics of one-dimensional classical Hamiltonian dissipative systems”, Physics Letters A, 382:8 (2018), 548  crossref
    8. Zorin A.V., “Operatsionnaya model kvantovykh izmerenii kuryshkina-vudkevicha”, Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Matematika, informatika, fizika, 2012, no. 2, 43–55 The operational model of quantum measurement of kuryshkin-wodkiewicz  elib
    9. Vasily E. Tarasov, Monograph Series on Nonlinear Science and Complexity, 7, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems, 2008, 521  crossref
    10. V. S. Kirchanov, “Applying the Linblad equation to quantum dissipative systems”, Theoret. and Math. Phys., 148:2 (2006), 1117–1122  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Rafael J. Wysocki, “Hydrodynamic quantization of mechanical systems”, Phys. Rev. A, 72:3 (2005)  crossref
    12. Tarasov, VE, “Path integral for quantum operations”, Journal of Physics A-Mathematical and General, 37:9 (2004), 3241  crossref  mathscinet  zmath  adsnasa  isi
    13. Georgi Georgiev, Iskren Georgiev, “The Least Action and the Metric of an Organized System”, Open Syst. Inf. Dyn., 09:04 (2002), 371  crossref
    14. R. J. Wysocki, “Quantum equations of motion for a dissipative system”, Phys. Rev. A, 61:2 (2000)  crossref
    15. A. O. Bolivar, “Quantization of non-Hamiltonian physical systems”, Phys. Rev. A, 58:6 (1998), 4330  crossref
    16. V. E. Tarasov, “Quantum dissipative systems. III. Definition and algebraic structure”, Theoret. and Math. Phys., 110:1 (1997), 57–67  mathnet  crossref  crossref  mathscinet  zmath  isi
    17. V. E. Tarasov, “Quantum dissipative systems. IV. Analog of Lie algebra and Lie group”, Theoret. and Math. Phys., 110:2 (1997), 168–178  mathnet  crossref  crossref  mathscinet  zmath  isi
    18. B. A. Arbuzov, “On quantum description of motion with friction”, Theoret. and Math. Phys., 106:2 (1996), 249–253  mathnet  crossref  crossref  zmath  isi
    19. C. P. Dettmann, G. P. Morriss, “Hamiltonian formulation of the Gaussian isokinetic thermostat”, Phys. Rev. E, 54:3 (1996), 2495  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1078
    Full-text PDF :380
    References:116
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025