Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 110, Number 2, Pages 179–213
DOI: https://doi.org/10.4213/tmf961
(Mi tmf961)
 

This article is cited in 13 scientific papers (total in 13 papers)

Tetrahedron equation and spin integrable models on the cubic lattice

Yu. G. Stroganov

Institute for High Energy Physics
References:
Abstract: The paper is a review of results on three-dimensional generalization of Yang–Baxter equation obtained starting from the pioneering works of Zamolodchikov (1979) to our works made in spring 1995. The integrability condition for spin statistical models on the simple cubic lattice (tetrahedron equation) is discussed. Different versions of this equation are considered with their symmetrical properties. The solution of the tetrahedron equation corresponding to Bazhanov–Baxter model is considered in detail. The review contains an update list of solutions for this equation. Generalization for unhomogenious spin models with two types of Bolzmann's weights forming the checkerboard lattice is considered.
Received: 20.05.1996
English version:
Theoretical and Mathematical Physics, 1997, Volume 110, Issue 2, Pages 141–167
DOI: https://doi.org/10.1007/BF02630441
Bibliographic databases:
Language: Russian
Citation: Yu. G. Stroganov, “Tetrahedron equation and spin integrable models on the cubic lattice”, TMF, 110:2 (1997), 179–213; Theoret. and Math. Phys., 110:2 (1997), 141–167
Citation in format AMSBIB
\Bibitem{Str97}
\by Yu.~G.~Stroganov
\paper Tetrahedron equation and spin integrable models on the cubic lattice
\jour TMF
\yr 1997
\vol 110
\issue 2
\pages 179--213
\mathnet{http://mi.mathnet.ru/tmf961}
\crossref{https://doi.org/10.4213/tmf961}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1471683}
\zmath{https://zbmath.org/?q=an:1006.17016}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 110
\issue 2
\pages 141--167
\crossref{https://doi.org/10.1007/BF02630441}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XR12900001}
Linking options:
  • https://www.mathnet.ru/eng/tmf961
  • https://doi.org/10.4213/tmf961
  • https://www.mathnet.ru/eng/tmf/v110/i2/p179
  • This publication is cited in the following 13 articles:
    1. Pramod Padmanabhan, Vladimir Korepin, “Majorana fermions solve the tetrahedron equations as well as higher simplex equations”, Nuclear Physics B, 2025, 116865  crossref
    2. Mustafa Mullahasanoglu, “The star–square relation and the generalized star–triangle relation from 3d supersymmetric dualities I”, Eur. Phys. J. Plus, 139:7 (2024)  crossref
    3. Pramod Padmanabhan, Vladimir Korepin, “Solving the Yang-Baxter, tetrahedron and higher simplex equations using Clifford algebras”, Nuclear Physics B, 1007 (2024), 116664  crossref
    4. Pavlos Kassotakis, “Entwining tetrahedron maps”, Partial Differential Equations in Applied Mathematics, 12 (2024), 100949  crossref
    5. T.K. Kassenova, P.Yu. Tsyba, O.V. Razina, R. Myrzakulov, “Three-partite vertex model and knot invariants”, Physica A: Statistical Mechanics and its Applications, 597 (2022), 127283  crossref
    6. de-la-Cruz-Moreno J., Garcia-Compean H., “Star-Triangle Type Relations From 2D N = (0,2) Usp(2N) Dualities”, J. High Energy Phys., 2021, no. 1, 023  crossref  isi
    7. Suzuki O., Zhang Zh., “A Method of Riemann-Hilbert Problem For Zhang'S Conjecture 1 in a Ferromagnetic 3D Ising Model: Trivialization of Topological Structure”, Mathematics, 9:7 (2021), 776  crossref  isi
    8. Zhang Zh., Suzuki O., March N.H., “Clifford Algebra Approach of 3D Ising Model”, Adv. Appl. Clifford Algebr., 29:1 (2019), UNSP 12  crossref  mathscinet  isi
    9. Gahramanov I. Jafarzade Sh., “Integrable Lattice Spin Models From Supersymmetric Dualities”, Phys. Part. Nuclei Lett., 15:6 (2018), 650–667  crossref  isi  scopus
    10. Zhang Zhidong, “Mathematical Structure and the Conjectured Exact Solution of Threedimensional (3D) Ising Model”, Acta Metall. Sin., 52:10 (2016), 1311–1325  crossref  isi  scopus
    11. Aristophanes Dimakis, Folkert Müller-Hoissen, “Simplex and Polygon Equations”, SIGMA, 11 (2015), 042, 49 pp.  mathnet  crossref  mathscinet
    12. March N.H. Zhang Z.D., “Theory and Phenomenology for a Variety of Classical and Quantum Phase Transitions”, J. Math. Chem., 51:7 (2013), 1694–1711  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    13. Zhang Zhi-Dong, “Mathematical Structure of the Three-Dimensional (3D) Ising Model”, Chin. Phys. B, 22:3 (2013), 030513  crossref  adsnasa  isi  scopus  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:708
    Full-text PDF :293
    References:90
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025