Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 124, Number 3, Pages 481–489
DOI: https://doi.org/10.4213/tmf652
(Mi tmf652)
 

This article is cited in 6 scientific papers (total in 6 papers)

Two-body problem on spaces of constant curvature: II. Spectral properties of the Hamiltonian

I. É. Stepanovaa, A. V. Shchepetilovb

a Schmidt United Institute of Physics of the Earth, Russian Academy of Scienses
b M. V. Lomonosov Moscow State University, Faculty of Physics
Full-text PDF (229 kB) Citations (6)
References:
Abstract: We consider the problem of two bodies with a central interaction on simply connected constant-curvature spaces of arbitrary dimension. We construct the self-adjoint extension of the quantum Hamiltonian, which was explicitly expressed through the radial differential operator and the generators of the isometry group of a configuration space in Part I of this paper. Exact spectral series are constructed for several potentials in the space $\mathbb S^3$.
Received: 12.11.1999
Revised: 03.04.2000
English version:
Theoretical and Mathematical Physics, 2000, Volume 124, Issue 3, Pages 1265–1272
DOI: https://doi.org/10.1007/BF02551003
Bibliographic databases:
Language: Russian
Citation: I. É. Stepanova, A. V. Shchepetilov, “Two-body problem on spaces of constant curvature: II. Spectral properties of the Hamiltonian”, TMF, 124:3 (2000), 481–489; Theoret. and Math. Phys., 124:3 (2000), 1265–1272
Citation in format AMSBIB
\Bibitem{SteShc00}
\by I.~\'E.~Stepanova, A.~V.~Shchepetilov
\paper Two-body problem on spaces of constant curvature: II.~Spectral properties of the Hamiltonian
\jour TMF
\yr 2000
\vol 124
\issue 3
\pages 481--489
\mathnet{http://mi.mathnet.ru/tmf652}
\crossref{https://doi.org/10.4213/tmf652}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1821108}
\zmath{https://zbmath.org/?q=an:1115.37333}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 3
\pages 1265--1272
\crossref{https://doi.org/10.1007/BF02551003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000090122800009}
Linking options:
  • https://www.mathnet.ru/eng/tmf652
  • https://doi.org/10.4213/tmf652
  • https://www.mathnet.ru/eng/tmf/v124/i3/p481
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024