Abstract:
We give a general construction of the probability measure for describing stochastic fractals that model fractally disordered media. For these stochastic fractals, we introduce the notion of a metrically homogeneous fractal Hausdorff–Karathéodory measure of a nonrandom type. We select a class F[q] of random point fields with Markovian refinements for which we explicitly construct the probability distribution. We prove that under rather weak conditions, the fractal dimension D for random fields of this class is a self-averaging quantity and a fractal measure of a nonrandom type (the Hausdorff D-measure) can be defined on these fractals with probability 1.
Citation:
Yu. P. Virchenko, O. L. Shpilinskaya, “Random point fields with Markovian refinements and the geometry of fractally disordered media”, TMF, 124:3 (2000), 490–505; Theoret. and Math. Phys., 124:3 (2000), 1273–1285
\Bibitem{VirShp00}
\by Yu.~P.~Virchenko, O.~L.~Shpilinskaya
\paper Random point fields with Markovian refinements and the geometry of fractally disordered media
\jour TMF
\yr 2000
\vol 124
\issue 3
\pages 490--505
\mathnet{http://mi.mathnet.ru/tmf653}
\crossref{https://doi.org/10.4213/tmf653}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1821109}
\zmath{https://zbmath.org/?q=an:1115.82322}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 3
\pages 1273--1285
\crossref{https://doi.org/10.1007/BF02551004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000090122800010}
Linking options:
https://www.mathnet.ru/eng/tmf653
https://doi.org/10.4213/tmf653
https://www.mathnet.ru/eng/tmf/v124/i3/p490
This publication is cited in the following 5 articles:
Yu. P. Virchenko, D. A. Cherkashin, “Ierarkhicheskie modeli diskretnoi teorii perkolyatsii i markovskie vetvyaschiesya protsessy”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody kraevykh zadach. Pontryaginskie chteniya—XXXV», Voronezh, 26-30 aprelya 2024 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 235, VINITI RAN, M., 2024, 15–33
Yu. P. Virchenko, O. L. Shpilinskaya, “Spaces of Random Sets in Rd”, Lobachevskii J Math, 44:3 (2023), 1043
Yu. P. Virchenko, “Closed Separable Random Sets in Rd”, Lobachevskii J Math, 44:8 (2023), 3613
Yu. P. Virchenko, O. L. Shpilinskaya, “Probability Space of Stochastic Fractals”, Ukr Math J, 56:11 (2004), 1748
Yu. P. Virchenko, O. L. Shpilinskaya, “Stochastic Fractals with Markovian Refinements”, Theoret. and Math. Phys., 128:2 (2001), 983–995