Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 124, Number 2, Pages 249–264
DOI: https://doi.org/10.4213/tmf637
(Mi tmf637)
 

This article is cited in 9 scientific papers (total in 9 papers)

Two-body problem on spaces of constant curvature: I. Dependence of the Hamiltonian on the symmetry group and the reduction of the classical system

A. V. Shchepetilov

M. V. Lomonosov Moscow State University, Faculty of Physics
Full-text PDF (295 kB) Citations (9)
References:
Abstract: We consider the problem of two bodies with central interaction that propagate in a simply connected space with a constant curvature and an arbitrary dimension. We obtain the explicit expression for the quantum Hamiltonian via the radial differential operator and generators of the isometry group of a configuration space. We describe the reduced classical mechanical system determined on the homogeneous space of a Lie group in terms of orbits of the coadjoint representation of this group. We describe the reduced classical two-body problem.
Received: 12.11.1999
Revised: 03.04.2000
English version:
Theoretical and Mathematical Physics, 2000, Volume 124, Issue 2, Pages 1068–1081
DOI: https://doi.org/10.1007/BF02551078
Bibliographic databases:
Language: Russian
Citation: A. V. Shchepetilov, “Two-body problem on spaces of constant curvature: I. Dependence of the Hamiltonian on the symmetry group and the reduction of the classical system”, TMF, 124:2 (2000), 249–264; Theoret. and Math. Phys., 124:2 (2000), 1068–1081
Citation in format AMSBIB
\Bibitem{Shc00}
\by A.~V.~Shchepetilov
\paper Two-body problem on spaces of constant curvature: I.~Dependence of the Hamiltonian on the symmetry group and the reduction of the classical system
\jour TMF
\yr 2000
\vol 124
\issue 2
\pages 249--264
\mathnet{http://mi.mathnet.ru/tmf637}
\crossref{https://doi.org/10.4213/tmf637}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1821115}
\zmath{https://zbmath.org/?q=an:1112.37312}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 2
\pages 1068--1081
\crossref{https://doi.org/10.1007/BF02551078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089809400005}
Linking options:
  • https://www.mathnet.ru/eng/tmf637
  • https://doi.org/10.4213/tmf637
  • https://www.mathnet.ru/eng/tmf/v124/i2/p249
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:641
    Full-text PDF :256
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024