Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1984, Volume 58, Number 2, Pages 233–243 (Mi tmf4525)  

This article is cited in 27 scientific papers (total in 28 papers)

Adiabatic perturbation of a periodic potential

V. S. Buslaev
References:
Abstract: A differential equation of the form [d2dx2+p(x)+q(εx)]f=0 is considered. The coefficient p is assumed to be a periodic function: p(x+a)=p(x). The behavior of the solutions for |ε|1 is studied. The concept of a turning point is generalized to this case, and self-consistent asymptotic expressions are obtained for the solutions at a certain distance from the turning points and in their neighborhoods. For p=0, the obtained expressions agree with the classical WKB expressions.
Received: 25.04.1983
English version:
Theoretical and Mathematical Physics, 1984, Volume 58, Issue 2, Pages 153–159
DOI: https://doi.org/10.1007/BF01017921
Bibliographic databases:
Language: Russian
Citation: V. S. Buslaev, “Adiabatic perturbation of a periodic potential”, TMF, 58:2 (1984), 233–243; Theoret. and Math. Phys., 58:2 (1984), 153–159
Citation in format AMSBIB
\Bibitem{Bus84}
\by V.~S.~Buslaev
\paper Adiabatic perturbation of a periodic potential
\jour TMF
\yr 1984
\vol 58
\issue 2
\pages 233--243
\mathnet{http://mi.mathnet.ru/tmf4525}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=743409}
\zmath{https://zbmath.org/?q=an:0534.34064|0557.34053}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 58
\issue 2
\pages 153--159
\crossref{https://doi.org/10.1007/BF01017921}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TG27600009}
Linking options:
  • https://www.mathnet.ru/eng/tmf4525
  • https://www.mathnet.ru/eng/tmf/v58/i2/p233
    Cycle of papers
    This publication is cited in the following 28 articles:
    1. A.I. Allilueva, A.I. Shafarevich, “Quasi-Classical Asymptotics Describing the Electron-Hole Interaction and the Klein Effect for the (2+1)-Dirac Equation in Abruptly Varying Fields”, Russ. J. Math. Phys., 31:3 (2024), 339  crossref
    2. A.I. Allilueva, A.I. Shafarevich, “Semiclassical Asymptotics and Particle-Antiparticle Interactions for the Dirac Equations with Abruptly Varying 4-Potential”, Russ. J. Math. Phys., 31:4 (2024), 577  crossref
    3. I. A. Lavrinenko, A. I. Shafarevich, “Quantization of Nonsmooth Curves and the Semiclassical Spectrum of the One-Dimensional Schrödinger Operator with a Localized Perturbation of the Potential”, Russ. J. Math. Phys., 30:2 (2023), 209  crossref
    4. S. Yu. Dobrokhotov, “Asymptotics of the Cauchy Problem for the One-Dimensional Schrödinger Equation with Rapidly Oscillating Initial Data and Small Addition to the Smooth Potential”, Russ. J. Math. Phys., 30:4 (2023), 466  crossref
    5. A. I. Allilueva, A. I. Shafarevich, “Maslov's Complex Germ in the Cauchy Problem for a Wave Equation with a Jumping Velocity”, Russ. J. Math. Phys., 29:1 (2022), 1  crossref
    6. A. I. Allilueva, A. I. Shafarevich, “Reflection and Refraction of Lagrangian Manifolds Corresponding to Short-Wave Solutions of the Wave Equation with an Abruptly Varying Velocity”, Russ. J. Math. Phys., 28:2 (2021), 137  crossref
    7. A. R. Bikmetov, I. Kh. Khusnullin, “Perturbation of Hill operator by narrow potentials”, Russian Math. (Iz. VUZ), 61:7 (2017), 1–10  mathnet  crossref  isi
    8. V. M. Babich, A. M. Budylin, L. A. Dmitrieva, A. I. Komech, S. B. Levin, M. V. Perel', E. A. Rybakina, V. V. Sukhanov, A. A. Fedotov, “On the mathematical work of Vladimir Savel'evich Buslaev”, St. Petersburg Math. J., 25:2 (2014), 151–174  mathnet  crossref  mathscinet  zmath  isi  elib
    9. A. A. Fedotov, “Monodromization method in the theory of almost-periodic equations”, St. Petersburg Math. J., 25:2 (2014), 303–325  mathnet  crossref  mathscinet  zmath  isi  elib
    10. A. A. Fedotov, “Complex WKB method for adiabatic perturbations of a periodic Schrödinger operator”, J. Math. Sci. (N. Y.), 173:3 (2011), 320–339  mathnet  crossref
    11. A. A. Pozharskii, “Adiabatic asymptotics of reflection coefficients of a quantum electron moving in a two-dimensional waveguide”, J Math Sci, 156:4 (2009), 669  crossref
    12. A. A. Pozharskii, “Semicrystal with a singular potential in an accelerating electric field”, Theoret. and Math. Phys., 146:3 (2006), 343–360  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. Belov, VV, “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, Journal of Engineering Mathematics, 55:1–4 (2006), 183  crossref  mathscinet  zmath  isi
    14. V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Asymptotic Solutions of Nonrelativistic Equations of Quantum Mechanics in Curved Nanotubes: I. Reduction to Spatially One-Dimensional Equations”, Theoret. and Math. Phys., 141:2 (2004), 1562–1592  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. V. S. Buslaev, M. V. Buslaeva, A. Grigis, “Adiabatic asymptotics of the reflection coefficient”, St. Petersburg Math. J., 16:3 (2005), 437–452  mathnet  crossref  mathscinet  zmath
    16. A. A. Pozharskii, “On the nature of the Stark–Wannier spectrum”, St. Petersburg Math. J., 16:3 (2005), 561–581  mathnet  crossref  mathscinet  zmath
    17. V. V. Belov, S. Yu. Dobrokhotov, S. O. Sinitsyn, “Asymptotic solutions of the Schrödinger equation in thin tubes”, Proc. Steklov Inst. Math. (Suppl.), 2003no. , suppl. 1, S13–S23  mathnet  mathscinet  zmath  elib
    18. A. A. Pozharskii, “A crystal with a singular potential in a homogeneous electric field”, Theoret. and Math. Phys., 123:1 (2000), 524–538  mathnet  crossref  crossref  mathscinet  zmath  isi
    19. S. Tajima, “Perturbed Lamé equation and the Buslaev phase”, Ukr Math J, 50:12 (1998), 1908  crossref
    20. Shinichi Tajima, New Trends in Microlocal Analysis, 1997, 143  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:447
    Full-text PDF :158
    References:56
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025