Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1984, Volume 58, Number 2, Pages 244–253 (Mi tmf4331)  

This article is cited in 5 scientific papers (total in 5 papers)

Reconstruction of the interaction potential in quasiclassical scattering

D. I. Abramov
Full-text PDF (917 kB) Citations (5)
References:
Abstract: The reconstruction of a local spherically symmetric potential from scattering data is considered in the quasiclassical approximation for the case when the scattering data are known on some curve in the energy-angular momentum plane. In this plane a twoparameter family of curves is found for which the problem reduces to an Abel integral equation, and solutions are obtained that generalize the known solutions for constant energy and for constant angular momentum. It is shown that the solution of the quasiclassical inverse scattering problem is a combination of the solutions of two independent classical problems with different initial data – the scattering angle and the delay time. Cases are described in which the result can be represented in the form of an explicit function.
Received: 27.04.1983
English version:
Theoretical and Mathematical Physics, 1984, Volume 58, Issue 2, Pages 160–166
DOI: https://doi.org/10.1007/BF01017922
Bibliographic databases:
Language: Russian
Citation: D. I. Abramov, “Reconstruction of the interaction potential in quasiclassical scattering”, TMF, 58:2 (1984), 244–253; Theoret. and Math. Phys., 58:2 (1984), 160–166
Citation in format AMSBIB
\Bibitem{Abr84}
\by D.~I.~Abramov
\paper Reconstruction of the interaction potential in quasiclassical scattering
\jour TMF
\yr 1984
\vol 58
\issue 2
\pages 244--253
\mathnet{http://mi.mathnet.ru/tmf4331}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=743410}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 58
\issue 2
\pages 160--166
\crossref{https://doi.org/10.1007/BF01017922}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TG27600010}
Linking options:
  • https://www.mathnet.ru/eng/tmf4331
  • https://www.mathnet.ru/eng/tmf/v58/i2/p244
  • This publication is cited in the following 5 articles:
    1. B V Budyak, B N Zakhariev, “New exactly solvable models for the Schrodinger equation”, Inverse Problems, 3:1 (1987), 125  crossref
    2. M. N. Popushoi, “On the inverse problem for the scattering theory of charged particles when there is a linear relationship between the energy, the square of the orbital angular momentum, and the Coulomb coupling constant”, Theoret. and Math. Phys., 69:3 (1986), 1272–1278  mathnet  crossref  isi
    3. I. V. Poplavskii, “Generalized Darboux–Crum–Krein transformations”, Theoret. and Math. Phys., 69:3 (1986), 1278–1282  mathnet  crossref  mathscinet  isi
    4. D. I. Abramov, “Equations of the quantum inverse scattering method in the semiclassical limit”, Theoret. and Math. Phys., 63:1 (1985), 344–356  mathnet  crossref  mathscinet  isi
    5. I. V. Bogdanov, “Inverse problem of mechanics in momentum space”, Soviet Physics Journal, 28:1 (1985), 40  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:422
    Full-text PDF :143
    References:82
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025