Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1984, Volume 58, Number 2, Pages 229–232 (Mi tmf4330)  

This article is cited in 7 scientific papers (total in 7 papers)

Clifford algebras as superalgebras and quantization

D. A. Leites
Full-text PDF (441 kB) Citations (7)
References:
Abstract: On supermanifolds there are two types of mechanics, to which there correspond superalgebras of functions with Poisson or Butan brackets (respectively, antibrackets). For them, quantizations are constructed in the following senses: 1) representations of the commutation relations, 2) deformation of the Poisson (respectively, Butan) superalgebra into the Lie superalgebra of differential operators, 3) analogs of the spinor representation of a symplectic (orthogonal) Lie algebra. The Clifford algebra is given a new interpretation. Invariant polynomials and Casimir operators on the Poisson superalgebra are described.
Received: 18.08.1982
English version:
Theoretical and Mathematical Physics, 1984, Volume 58, Issue 2, Pages 150–152
DOI: https://doi.org/10.1007/BF01017920
Bibliographic databases:
Language: Russian
Citation: D. A. Leites, “Clifford algebras as superalgebras and quantization”, TMF, 58:2 (1984), 229–232; Theoret. and Math. Phys., 58:2 (1984), 150–152
Citation in format AMSBIB
\Bibitem{Lei84}
\by D.~A.~Leites
\paper Clifford algebras as superalgebras and quantization
\jour TMF
\yr 1984
\vol 58
\issue 2
\pages 229--232
\mathnet{http://mi.mathnet.ru/tmf4330}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=743408}
\zmath{https://zbmath.org/?q=an:0572.17002|0535.58029}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 58
\issue 2
\pages 150--152
\crossref{https://doi.org/10.1007/BF01017920}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984TG27600008}
Linking options:
  • https://www.mathnet.ru/eng/tmf4330
  • https://www.mathnet.ru/eng/tmf/v58/i2/p229
  • This publication is cited in the following 7 articles:
    1. Groman P., Leites D., Shchepochkina I., “Defining relations for the exceptional Lie superalgebras of vector fields”, Orbit Method in Geometry and Physics - in Honor of A.A. Kirillov, Progress in Mathematics, 213, 2003, 101–146  isi
    2. D. A. Leites, I. M. Shchepochkina, “How to Quantize the Antibracket”, Theoret. and Math. Phys., 126:3 (2001), 281–306  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Grozman, P, “The Shapovalov determinant for the Poisson superalgebras”, Journal of Nonlinear Mathematical Physics, 8:2 (2001), 220  crossref  isi
    4. A Frydryszak, “Supersymmetric mechanics with an odd action functional”, J. Phys. A: Math. Gen., 26:23 (1993), 7227  crossref
    5. Roberto Floreanini, Dimitry A. Leites, Luc Vinet, “On the defining relations of quantum superalgebras”, Lett Math Phys, 23:2 (1991), 127  crossref
    6. Peter Bryant, Lecture Notes in Physics, 311, Complex Differential Geometry and Supermanifolds in Strings and Fields, 1988, 150  crossref
    7. D. A. Leites, “Lie superalgebras”, J. Soviet Math., 30:6 (1985), 2481–2512  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:524
    Full-text PDF :209
    References:75
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025