Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1979, Volume 40, Number 1, Pages 95–99 (Mi tmf2807)  

This article is cited in 31 scientific papers (total in 31 papers)

Correlation functions of the semi-infinite two-dimensional ising model

R. Z. Bariev
References:
Abstract: The local magnetization of a spin at an arbitrary distance $(n-1)$ from the edge of the lattice is rigorously calculated for the semi-infinite two-dimensional Ising model. It is shown that as $T\to T_c$, $n\to\infty$ the magnetization takes the scaling form $\langle s_n\rangle =\tau^{1/8}F(x)$ ($\tau=|1-T/T_c|$, $x\sim 2n \tau$). Exact expressions are found for the function $F(x)$ and its asymptotic behavior at large and small $x$ is found.
Received: 23.08.1978
English version:
Theoretical and Mathematical Physics, 1979, Volume 40, Issue 1, Pages 623–626
DOI: https://doi.org/10.1007/BF01019245
Bibliographic databases:
Language: Russian
Citation: R. Z. Bariev, “Correlation functions of the semi-infinite two-dimensional ising model”, TMF, 40:1 (1979), 95–99; Theoret. and Math. Phys., 40:1 (1979), 623–626
Citation in format AMSBIB
\Bibitem{Bar79}
\by R.~Z.~Bariev
\paper Correlation functions of the semi-infinite two-dimensional ising model
\jour TMF
\yr 1979
\vol 40
\issue 1
\pages 95--99
\mathnet{http://mi.mathnet.ru/tmf2807}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=543982}
\transl
\jour Theoret. and Math. Phys.
\yr 1979
\vol 40
\issue 1
\pages 623--626
\crossref{https://doi.org/10.1007/BF01019245}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979JG40800009}
Linking options:
  • https://www.mathnet.ru/eng/tmf2807
  • https://www.mathnet.ru/eng/tmf/v40/i1/p95
  • This publication is cited in the following 31 articles:
    1. Anatoly Konechny, “Ising model in a boundary magnetic field with random discontinuities”, J. Phys. A: Math. Theor., 55:43 (2022), 435401  crossref
    2. M. N. Najafi, M. A. Rajabpour, “Formation probabilities and statistics of observables as defect problems in free fermions and quantum spin chains”, Phys. Rev. B, 101:16 (2020)  crossref
    3. J M Maillet, G Niccoli, “On separation of variables for reflection algebras”, J. Stat. Mech., 2019:9 (2019), 094020  crossref
    4. Jean Michel Maillet, Giuliano Niccoli, Baptiste Pezelier, “Transfer matrix spectrum for cyclic representations of the 6-vertex reflection algebra II”, SciPost Phys., 5:3 (2018)  crossref
    5. Oleg Miroshnichenko, “Differential equation for local magnetization in the boundary Ising model”, Nuclear Physics B, 811:3 (2009), 385  crossref
    6. Schuricht, D, “Dynamical response functions in the quantum Ising chain with a boundary”, Journal of Statistical Mechanics-Theory and Experiment, 2007, P11004  crossref  mathscinet  isi
    7. P. Lecheminant, E. Orignac, “Magnetization and dimerization profiles of the cut two-leg spin ladder”, Phys. Rev. B, 65:17 (2002)  crossref
    8. H. FURUTSU, T. KOJIMA, Y.-H. QUANO, “FORM FACTORS OF THE SU(2) INVARIANT MASSIVE THIRRING MODEL WITH BOUNDARY REFLECTION”, Int. J. Mod. Phys. A, 15:19 (2000), 3037  crossref
    9. Zhan-Ning Hu, “Heisenberg XYZ Hamiltonian with integrable impurities”, Physics Letters A, 250:4-6 (1998), 337  crossref
    10. Heng Fan, Bo-yu Hou, Kang-jie Shi, Zhong-xia Yang, “Algebraic Bethe ansatz for the eight-vertex model with general open boundary conditions”, Nuclear Physics B, 478:3 (1996), 723  crossref
    11. A. Leclair, F. Lesage, S. Sachdev, H. Saleur, “Finite temperature correlations in the one-dimensional quantum Ising model”, Nuclear Physics B, 482:3 (1996), 579  crossref
    12. Yu-Kui Zhou, Murray T Batchelor, “Exact solution and surface critical behaviour of open cyclic SOS lattice models”, J. Phys. A: Math. Gen., 29:9 (1996), 1987  crossref
    13. Yu-kui Zhou, “Fusion hierarchy and finite-size corrections of Uq[sl(2)]-invariant vertex models with open boundaries”, Nuclear Physics B, 453:3 (1995), 619  crossref
    14. Michio Jimbo, Rinat Kedem, Takeo Kojima, Hitoshi Konno, Tetsuji Miwa, “XXZ chain with a boundary”, Nuclear Physics B, 441:3 (1995), 437  crossref
    15. A. E. Patrick, “The influence of external boundary conditions on the spherical model of a ferromagnet. I. Magnetization profiles”, J Stat Phys, 75:1-2 (1994), 253  crossref
    16. Rajamani S. Narayanan, John Palmer, Craig A. Tracy, NATO ASI Series, 278, Painlevé Transcendents, 1992, 407  crossref
    17. R.Z. Bariev, O.A. Malov, N.A. Barieva, “Local magnetization of the two-dimensional Ising model near the phase boundary”, Physica A: Statistical Mechanics and its Applications, 169:2 (1990), 281  crossref
    18. Andrea J. Liu, Michael E. Fisher, “Universal critical adsorption profile from optical experiments”, Phys. Rev. A, 40:12 (1989), 7202  crossref
    19. R.Z. Bariev, O.A. Malov, “Local magnetization of the two-dimensional ising model near an inhomogeneous defect”, Physics Letters A, 136:6 (1989), 291  crossref
    20. E. I. Kornilov, V. B. Priezzhev, “Solution of the Kasteleyn model on a half-plane”, Theoret. and Math. Phys., 75:1 (1988), 408–416  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:322
    Full-text PDF :133
    References:52
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025