Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1980, Volume 42, Number 2, Pages 262–270 (Mi tmf2370)  

This article is cited in 15 scientific papers (total in 15 papers)

Correlation functions of the semi-infinite two-dimensional ising model. II. Two-point correlation functions

R. Z. Bariev
References:
Abstract: The two-point correlations formed by spin and energy-density operators are calculated exactly for the semi-infinite two-dimensional Ising model. It is shown that these correlations have a scaling form near the critical point. The asymptotic behaviour of the scaling functions is studied for various distances and configurations of operators on the lattice. The results obtained are used for the verification of the phenomenological theories: the decay of correlations and scaling. On the basis of the exact results the phenomenological rule for calculating the asymptotics of the correlation functions is proposed for the case when the distance between one of the operators and the boundary is much smaller than the distance between the operators. Using this rule, the dependence of the local thermodynamic functions on the distance from the boundary is obtained.
Received: 21.02.1979
English version:
Theoretical and Mathematical Physics, 1980, Volume 42, Issue 2, Pages 173–178
DOI: https://doi.org/10.1007/BF01032121
Bibliographic databases:
Language: Russian
Citation: R. Z. Bariev, “Correlation functions of the semi-infinite two-dimensional ising model. II. Two-point correlation functions”, TMF, 42:2 (1980), 262–270; Theoret. and Math. Phys., 42:2 (1980), 173–178
Citation in format AMSBIB
\Bibitem{Bar80}
\by R.~Z.~Bariev
\paper Correlation functions of~the semi-infinite two-dimensional ising model. II.~Two-point correlation functions
\jour TMF
\yr 1980
\vol 42
\issue 2
\pages 262--270
\mathnet{http://mi.mathnet.ru/tmf2370}
\transl
\jour Theoret. and Math. Phys.
\yr 1980
\vol 42
\issue 2
\pages 173--178
\crossref{https://doi.org/10.1007/BF01032121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KH91900011}
Linking options:
  • https://www.mathnet.ru/eng/tmf2370
  • https://www.mathnet.ru/eng/tmf/v42/i2/p262
  • This publication is cited in the following 15 articles:
    1. Anatoly Konechny, “Ising model in a boundary magnetic field with random discontinuities”, J. Phys. A: Math. Theor., 55:43 (2022), 435401  crossref
    2. J M Maillet, G Niccoli, “On separation of variables for reflection algebras”, J. Stat. Mech., 2019:9 (2019), 094020  crossref
    3. N Kitanine, J M Maillet, G Niccoli, V Terras, “The open XXZ spin chain in the SoV framework: scalar product of separate states”, J. Phys. A: Math. Theor., 51:48 (2018), 485201  crossref
    4. Jean Michel Maillet, Giuliano Niccoli, Baptiste Pezelier, “Transfer matrix spectrum for cyclic representations of the 6-vertex reflection algebra II”, SciPost Phys., 5:3 (2018)  crossref
    5. Schuricht, D, “Dynamical response functions in the quantum Ising chain with a boundary”, Journal of Statistical Mechanics-Theory and Experiment, 2007, P11004  crossref  mathscinet  isi
    6. P. Lecheminant, E. Orignac, “Magnetization and dimerization profiles of the cut two-leg spin ladder”, Phys. Rev. B, 65:17 (2002)  crossref
    7. A. Leclair, F. Lesage, S. Sachdev, H. Saleur, “Finite temperature correlations in the one-dimensional quantum Ising model”, Nuclear Physics B, 482:3 (1996), 579  crossref
    8. R. Z. Bariev, L. Turban, “Surface critical behavior of inhomogeneous semi-infinite systems”, Phys. Rev. B, 45:18 (1992), 10761  crossref
    9. R. Z. Bariev, “Correlation functions of semi-infinite two-dimensional Ising model. III. Influence of a “fixed” boundary”, Theoret. and Math. Phys., 77:1 (1988), 1090–1095  mathnet  crossref  mathscinet  isi
    10. Lee-Fen Ko, “Spin-spin correlation in the two-dimensional Ising model with linear defects and fredholm equations”, Physics Letters A, 131:4-5 (1988), 285  crossref
    11. Helen Au-Yang, Jacques H.H. Perk, “Critical correlations in a Z-invariant inhomogeneous ising model”, Physica A: Statistical Mechanics and its Applications, 144:1 (1987), 44  crossref
    12. R. Z. Bariev, “Critical properties of a system near an angle boundary”, Theoret. and Math. Phys., 69:1 (1986), 1061–1062  mathnet  crossref  mathscinet  isi
    13. Lee-Fen Ko, Helen Au-Yang, Jacques H. H. Perk, “Energy-Density Correlation Functions in the Two-Dimensional Ising Model with a Line Defect”, Phys. Rev. Lett., 54:11 (1985), 1091  crossref
    14. J. Kroemer, W. Pesch, “The influence of a surface on Ising and conjugate model spin correlations atT=T c”, Z. Physik B - Condensed Matter, 46:3 (1982), 245  crossref
    15. R.Z. Bariev, “Local magnetization of the semi-infinite XY-chain”, Physica A: Statistical Mechanics and its Applications, 103:1-2 (1980), 363  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :160
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025