Abstract:
We study a nonlinear operator differential equation in a Hilbert space. This equation represents an abstract model for the system of Navier–Stokes equations. The main result consists in proving the existence of a strong solution to this equation under the condition that a certain other system of equations (related to the original equation) has only the zero solution.
Citation:
M. Otelbaev, A. A. Durmagambetov, E. N. Seitkulov, “Conditions for the Existence of a Global Strong Solution to a Class of Nonlinear Evolution Equations in a Hilbert Space”, Function theory and nonlinear partial differential equations, Collected papers. Dedicated to Stanislav Ivanovich Pohozaev on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 260, MAIK Nauka/Interperiodica, Moscow, 2008, 202–212; Proc. Steklov Inst. Math., 260 (2008), 194–203
\Bibitem{OteDurSei08}
\by M.~Otelbaev, A.~A.~Durmagambetov, E.~N.~Seitkulov
\paper Conditions for the Existence of a~Global Strong Solution to a~Class of Nonlinear Evolution Equations in a~Hilbert Space
\inbook Function theory and nonlinear partial differential equations
\bookinfo Collected papers. Dedicated to Stanislav Ivanovich Pohozaev on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 260
\pages 202--212
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm595}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489513}
\zmath{https://zbmath.org/?q=an:1233.34026}
\elib{https://elibrary.ru/item.asp?id=9934827}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 260
\pages 194--203
\crossref{https://doi.org/10.1134/S0081543808010148}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262227800014}
\elib{https://elibrary.ru/item.asp?id=27795469}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43749108853}
M. Otelbaev, “Examples of Equations of Navier–Stokes Type Not Strongly Solvable in the Large”, Math. Notes, 89:5 (2011), 726–733
Otelbaev M., Zhapsarbaeva L.K., “Continuous dependence of the solution of a parabolic equation in a Hilbert space on the parameters and initial data”, Differ. Equ., 45:6 (2009), 836–861