Abstract:
We study the problem of reconstructing an unknown function from a bounded set of its values given with random errors at random points. The function is assumed to belong to a function class from a certain family.
Citation:
S. V. Konyagin, E. D. Livshits, “On Adaptive Estimators in Statistical Learning Theory”, Function theory and nonlinear partial differential equations, Collected papers. Dedicated to Stanislav Ivanovich Pohozaev on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 260, MAIK Nauka/Interperiodica, Moscow, 2008, 193–201; Proc. Steklov Inst. Math., 260 (2008), 185–193
\Bibitem{KonLiv08}
\by S.~V.~Konyagin, E.~D.~Livshits
\paper On Adaptive Estimators in Statistical Learning Theory
\inbook Function theory and nonlinear partial differential equations
\bookinfo Collected papers. Dedicated to Stanislav Ivanovich Pohozaev on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 260
\pages 193--201
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm594}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489512}
\zmath{https://zbmath.org/?q=an:1233.62133}
\elib{https://elibrary.ru/item.asp?id=9934826}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 260
\pages 185--193
\crossref{https://doi.org/10.1134/S0081543808010136}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262227800013}
\elib{https://elibrary.ru/item.asp?id=13575350}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43749099630}
Linking options:
https://www.mathnet.ru/eng/tm594
https://www.mathnet.ru/eng/tm/v260/p193
This publication is cited in the following 2 articles:
Darkhovskiy B., “Non Asymptotic Minimax Estimation of Functionals with Noisy Observations”, Communications in Statistics-Simulation and Computation, 41:6, Part 1 Sp. Iss. SI (2012), 787–803
Yu. V. Malykhin, “Upper Bounds for Errors of Estimators in a Problem of Nonparametric Regression: The Adaptive Case and the Case of Unknown Measure $\rho_X$”, Math. Notes, 86:5 (2009), 682–689