Abstract:
We consider the problem of nonexistence (blow-up) of solutions of nonlinear evolution equations in the case of a bounded (with respect to the space variables) domain. Following the method of nonlinear capacity based on the application of test functions that are optimal (“characteristic”) for the corresponding nonlinear operators, we obtain conditions for the blow-up of solutions to nonlinear initial–boundary value problems. We also show by examples that these conditions are sharp in the class of problems under consideration.
Citation:
S. I. Pokhozhaev, “On the Blow-up of Solutions to Nonlinear Initial–Boundary Value Problems”, Function theory and nonlinear partial differential equations, Collected papers. Dedicated to Stanislav Ivanovich Pohozaev on the occasion of his 70th birthday, Trudy Mat. Inst. Steklova, 260, MAIK Nauka/Interperiodica, Moscow, 2008, 213–226; Proc. Steklov Inst. Math., 260 (2008), 204–217
\Bibitem{Pok08}
\by S.~I.~Pokhozhaev
\paper On the Blow-up of Solutions to Nonlinear Initial--Boundary Value Problems
\inbook Function theory and nonlinear partial differential equations
\bookinfo Collected papers. Dedicated to Stanislav Ivanovich Pohozaev on the occasion of his 70th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2008
\vol 260
\pages 213--226
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm596}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2489514}
\zmath{https://zbmath.org/?q=an:1233.35071}
\elib{https://elibrary.ru/item.asp?id=9934828}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2008
\vol 260
\pages 204--217
\crossref{https://doi.org/10.1134/S008154380801015X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262227800015}
\elib{https://elibrary.ru/item.asp?id=13587175}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43749121870}
Linking options:
https://www.mathnet.ru/eng/tm596
https://www.mathnet.ru/eng/tm/v260/p213
This publication is cited in the following 4 articles:
Matus P.P., Churbanova N.G., Shchadinskii D.A., “On the role of conservation laws and input data in the generation of peaking modes in quasilinear multidimensional parabolic equations with nonlinear source and in their approximations”, Differ. Equ., 52:7 (2016), 942–950
E. V. Yushkov, M. O. Korpusov, “Global Unsolvability of One-Dimensional Problems for Burgers-Type Equations”, Math. Notes, 98:3 (2015), 503–514
D. A. Schadinskii, “Zakony sokhraneniya i ikh znachenie v razrushenii resheniya v nelineinykh zadachakh dlya parabolicheskikh uravnenii”, Tr. In-ta matem., 23:2 (2015), 103–111
P. P. Matus, “Well-posedness of difference schemes for semilinear parabolic equations with weak solutions”, Comput. Math. Math. Phys., 50:12 (2010), 2044–2063