Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 8, Pages 1161–1194
DOI: https://doi.org/10.1070/SM2013v204n08ABEH004335
(Mi sm8086)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the boundary of the group of transformations leaving a measure quasi-invariant

Yu. A. Neretinabc

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
c University of Vienna
References:
Abstract: Let $A$ be a Lebesgue measure space. We interpret measures on $A\times A\times \mathbb R^\times$ as ‘maps’ from $A$ to $A$, which ‘spread’ $A$ along itself; their Radon-Nikodym derivatives are also spread. We discuss the basic properties of the semigroup of such maps and the action of this semigroup on the spaces $L^p(A)$.
Bibliography: 26 titles.
Keywords: Lebesgue space, Markov operator, polymorphism, characteristic function, spaces $L^p$.
Funding agency Grant number
Austrian Science Fund P22122
State Atomic Energy Corporation ROSATOM H.4e.45.90.11.1059
Received: 17.11.2011 and 04.02.2013
Bibliographic databases:
Document Type: Article
UDC: 517.518.112+512.583+517.983.23
MSC: Primary 22F10, 28A35; Secondary 28A33
Language: English
Original paper language: Russian
Citation: Yu. A. Neretin, “On the boundary of the group of transformations leaving a measure quasi-invariant”, Sb. Math., 204:8 (2013), 1161–1194
Citation in format AMSBIB
\Bibitem{Ner13}
\by Yu.~A.~Neretin
\paper On the boundary of the group of transformations leaving a~measure quasi-invariant
\jour Sb. Math.
\yr 2013
\vol 204
\issue 8
\pages 1161--1194
\mathnet{http://mi.mathnet.ru//eng/sm8086}
\crossref{https://doi.org/10.1070/SM2013v204n08ABEH004335}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3135689}
\zmath{https://zbmath.org/?q=an:06231592}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204.1161N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325549200005}
\elib{https://elibrary.ru/item.asp?id=20359269}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888329107}
Linking options:
  • https://www.mathnet.ru/eng/sm8086
  • https://doi.org/10.1070/SM2013v204n08ABEH004335
  • https://www.mathnet.ru/eng/sm/v204/i8/p83
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:573
    Russian version PDF:196
    English version PDF:21
    References:91
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024