Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 8, Pages 1195–1214
DOI: https://doi.org/10.1070/SM2013v204n08ABEH004336
(Mi sm8149)
 

This article is cited in 2 scientific papers (total in 2 papers)

A necessary flexibility condition for a nondegenerate suspension in Lobachevsky 3-space

D. A. Slutskiiab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
References:
Abstract: We show that some combination of the lengths of all edges of the equator of a flexible suspension in Lobachevsky 3-space is equal to zero (each length is taken with a ‘plus’ or ‘minus’ sign in this combination).
Bibliography: 10 titles.
Keywords: flexible polyhedron, hyperbolic space, flexible suspension, Connelly method, equator of a suspension.
Funding agency Grant number
Russian Foundation for Basic Research 10-01-91000-анф
Ministry of Education and Science of the Russian Federation НШ-6613.2010.1
02.740.11.0457
Received: 18.06.2012 and 21.03.2013
Bibliographic databases:
Document Type: Article
UDC: 514.113.5+514.132
MSC: 52C25
Language: English
Original paper language: Russian
Citation: D. A. Slutskii, “A necessary flexibility condition for a nondegenerate suspension in Lobachevsky 3-space”, Sb. Math., 204:8 (2013), 1195–1214
Citation in format AMSBIB
\Bibitem{Slu13}
\by D.~A.~Slutskii
\paper A necessary flexibility condition for a~nondegenerate suspension in Lobachevsky 3-space
\jour Sb. Math.
\yr 2013
\vol 204
\issue 8
\pages 1195--1214
\mathnet{http://mi.mathnet.ru//eng/sm8149}
\crossref{https://doi.org/10.1070/SM2013v204n08ABEH004336}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3135690}
\zmath{https://zbmath.org/?q=an:06231593}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204.1195S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325549200006}
\elib{https://elibrary.ru/item.asp?id=20359270}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888338486}
Linking options:
  • https://www.mathnet.ru/eng/sm8149
  • https://doi.org/10.1070/SM2013v204n08ABEH004336
  • https://www.mathnet.ru/eng/sm/v204/i8/p117
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:590
    Russian version PDF:150
    English version PDF:16
    References:61
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024