Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 8, Pages 1152–1160
DOI: https://doi.org/10.1070/SM2013v204n08ABEH004334
(Mi sm8175)
 

This article is cited in 1 scientific paper (total in 1 paper)

A bound for the Schur index of irreducible representations of finite groups

D. D. Kiselev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We construct an optimal bound for the Schur index of irreducible complex representations of finite groups over the field of rational numbers, when only the prime divisors of the order of the group are known. We study relationships with compatible and universally compatible extensions of number fields. We give a simpler proof of the well-known Berman-Yamada bound for the Schur index over the field $\mathbb{Q}_p$.
Bibliography: 7 titles.
Keywords: finite group, Schur index, universally compatible extensions.
Received: 12.09.2012 and 25.12.2012
Bibliographic databases:
Document Type: Article
UDC: 512.547.2+512.623.32
MSC: Primary 20C05; Secondary 20C99
Language: English
Original paper language: Russian
Citation: D. D. Kiselev, “A bound for the Schur index of irreducible representations of finite groups”, Sb. Math., 204:8 (2013), 1152–1160
Citation in format AMSBIB
\Bibitem{Kis13}
\by D.~D.~Kiselev
\paper A~bound for the Schur index of irreducible representations of finite groups
\jour Sb. Math.
\yr 2013
\vol 204
\issue 8
\pages 1152--1160
\mathnet{http://mi.mathnet.ru//eng/sm8175}
\crossref{https://doi.org/10.1070/SM2013v204n08ABEH004334}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3135688}
\zmath{https://zbmath.org/?q=an:06231591}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204.1152K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325549200004}
\elib{https://elibrary.ru/item.asp?id=20359268}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888314330}
Linking options:
  • https://www.mathnet.ru/eng/sm8175
  • https://doi.org/10.1070/SM2013v204n08ABEH004334
  • https://www.mathnet.ru/eng/sm/v204/i8/p73
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:405
    Russian version PDF:168
    English version PDF:15
    References:46
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024