|
This article is cited in 6 scientific papers (total in 6 papers)
Quantitative estimates in Beurling-Helson type theorems
V. V. Lebedev Moscow State Institute of Electronics and Mathematics (Technical University)
Abstract:
We consider the spaces $A_p(\mathbb T)$ of functions $f$ on the circle $\mathbb T$ such that the sequence of Fourier coefficients $\widehat f=\{\widehat f(k),\,k\in\mathbb Z\}$ belongs to $l^p$, $1\le p<2$. The norm in $A_p(\mathbb T)$ is defined by $\|f\|_{A_p}=\|\widehat f\|_{l^p}$. We study the rate of growth of the
norms $\|e^{i\lambda\varphi}\|_{A_p}$ as $|\lambda|\to\infty$, $\lambda\in\mathbb R$, for $C^1$-smooth real functions $\varphi$ on $\mathbb T$. The results have natural applications to the problem of changes of variable in the spaces $A_p(\mathbb T)$.
Bibliography: 17 titles.
Received: 15.10.2009 and 15.08.2010
Citation:
V. V. Lebedev, “Quantitative estimates in Beurling-Helson type theorems”, Sb. Math., 201:12 (2010), 1811–1836
Linking options:
https://www.mathnet.ru/eng/sm7639https://doi.org/10.1070/SM2010v201n12ABEH004133 https://www.mathnet.ru/eng/sm/v201/i12/p103
|
Statistics & downloads: |
Abstract page: | 747 | Russian version PDF: | 225 | English version PDF: | 22 | References: | 85 | First page: | 13 |
|