Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 12, Pages 1811–1836
DOI: https://doi.org/10.1070/SM2010v201n12ABEH004133
(Mi sm7639)
 

This article is cited in 6 scientific papers (total in 6 papers)

Quantitative estimates in Beurling-Helson type theorems

V. V. Lebedev

Moscow State Institute of Electronics and Mathematics (Technical University)
References:
Abstract: We consider the spaces $A_p(\mathbb T)$ of functions $f$ on the circle $\mathbb T$ such that the sequence of Fourier coefficients $\widehat f=\{\widehat f(k),\,k\in\mathbb Z\}$ belongs to $l^p$, $1\le p<2$. The norm in $A_p(\mathbb T)$ is defined by $\|f\|_{A_p}=\|\widehat f\|_{l^p}$. We study the rate of growth of the norms $\|e^{i\lambda\varphi}\|_{A_p}$ as $|\lambda|\to\infty$, $\lambda\in\mathbb R$, for $C^1$-smooth real functions $\varphi$ on $\mathbb T$. The results have natural applications to the problem of changes of variable in the spaces $A_p(\mathbb T)$.
Bibliography: 17 titles.
Received: 15.10.2009 and 15.08.2010
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 42A16
Language: English
Original paper language: Russian
Citation: V. V. Lebedev, “Quantitative estimates in Beurling-Helson type theorems”, Sb. Math., 201:12 (2010), 1811–1836
Citation in format AMSBIB
\Bibitem{Leb10}
\by V.~V.~Lebedev
\paper Quantitative estimates in Beurling-Helson type theorems
\jour Sb. Math.
\yr 2010
\vol 201
\issue 12
\pages 1811--1836
\mathnet{http://mi.mathnet.ru//eng/sm7639}
\crossref{https://doi.org/10.1070/SM2010v201n12ABEH004133}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760105}
\zmath{https://zbmath.org/?q=an:1219.42003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.201.1811L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287230700006}
\elib{https://elibrary.ru/item.asp?id=20338820}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955625562}
Linking options:
  • https://www.mathnet.ru/eng/sm7639
  • https://doi.org/10.1070/SM2010v201n12ABEH004133
  • https://www.mathnet.ru/eng/sm/v201/i12/p103
    Cycle of papers
    This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:747
    Russian version PDF:225
    English version PDF:22
    References:85
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024