Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 12, Pages 1837–1862
DOI: https://doi.org/10.1070/SM2010v201n12ABEH004134
(Mi sm7625)
 

This article is cited in 5 scientific papers (total in 5 papers)

Quasi-measures on the group $G^m$, Dirichlet sets, and uniqueness problems for multiple Walsh series

M. G. Plotnikov

Vologda State Academy of Milk Industry
References:
Abstract: Multiple Walsh series $(S)$ on the group $G^m$ are studied. It is proved that every at most countable set is a uniqueness set for series $(S)$ under convergence over cubes. The recovery problem is solved for the coefficients of series $(S)$ that converge outside countable sets or outside sets of Dirichlet type. A number of analogues of the de la Vallée Poussin theorem are established for series $(S)$.
Bibliography: 28 titles.
Keywords: dyadic group, multiple Walsh series, uniqueness sets, recovery problem for the coefficients of orthogonal series.
Received: 31.08.2009 and 04.06.2010
Russian version:
Matematicheskii Sbornik, 2010, Volume 201, Number 12, Pages 131–156
DOI: https://doi.org/10.4213/sm7625
Bibliographic databases:
Document Type: Article
UDC: 517.518.3
MSC: Primary 42C10; Secondary 26A39, 42C25
Language: English
Original paper language: Russian
Citation: M. G. Plotnikov, “Quasi-measures on the group $G^m$, Dirichlet sets, and uniqueness problems for multiple Walsh series”, Mat. Sb., 201:12 (2010), 131–156; Sb. Math., 201:12 (2010), 1837–1862
Citation in format AMSBIB
\Bibitem{Plo10}
\by M.~G.~Plotnikov
\paper Quasi-measures on the group $G^m$, Dirichlet sets, and uniqueness problems for multiple Walsh series
\jour Mat. Sb.
\yr 2010
\vol 201
\issue 12
\pages 131--156
\mathnet{http://mi.mathnet.ru/sm7625}
\crossref{https://doi.org/10.4213/sm7625}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760106}
\zmath{https://zbmath.org/?q=an:1217.42054}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.201.1837P}
\elib{https://elibrary.ru/item.asp?id=20338821}
\transl
\jour Sb. Math.
\yr 2010
\vol 201
\issue 12
\pages 1837--1862
\crossref{https://doi.org/10.1070/SM2010v201n12ABEH004134}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287230700007}
\elib{https://elibrary.ru/item.asp?id=25047888}
Linking options:
  • https://www.mathnet.ru/eng/sm7625
  • https://doi.org/10.1070/SM2010v201n12ABEH004134
  • https://www.mathnet.ru/eng/sm/v201/i12/p131
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:837
    Russian version PDF:208
    English version PDF:25
    References:68
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024