Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 2, Pages 283–312
DOI: https://doi.org/10.1070/SM2009v200n02ABEH003996
(Mi sm3885)
 

This article is cited in 24 scientific papers (total in 24 papers)

Zero sequences of holomorphic functions, representation of meromorphic functions. II. Entire functions

B. N. Khabibullinab

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
b Bashkir State University, Faculty of Mathematics
References:
Abstract: Let $\Lambda=\{\lambda_k\}$ be a sequence of points in the complex plane $\mathbb C$ and $f$ a non-trivial entire function of finite order $\rho$ and finite type $\sigma$ such that $f=0$ on $\Lambda$. Upper bounds for functions such as the Weierstrass-Hadamard canonical product of order $\rho$ constructed from the sequence $\Lambda$ are obtained. Similar bounds for meromorphic functions are also derived. These results are used to estimate the radius of completeness of a system of exponentials in $\mathbb C$.
Bibliography: 26 titles.
Keywords: function, zero sequence, subharmonic function, radius of completeness, system of exponentials.
Received: 22.05.2007 and 12.08.2008
Bibliographic databases:
UDC: 517.547.2+517.538.2+517.581+517.574
MSC: 30C15, 30D15, 30D30
Language: English
Original paper language: Russian
Citation: B. N. Khabibullin, “Zero sequences of holomorphic functions, representation of meromorphic functions. II. Entire functions”, Sb. Math., 200:2 (2009), 283–312
Citation in format AMSBIB
\Bibitem{Kha09}
\by B.~N.~Khabibullin
\paper Zero sequences of holomorphic functions, representation of meromorphic functions. II.~Entire functions
\jour Sb. Math.
\yr 2009
\vol 200
\issue 2
\pages 283--312
\mathnet{http://mi.mathnet.ru//eng/sm3885}
\crossref{https://doi.org/10.1070/SM2009v200n02ABEH003996}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2503141}
\zmath{https://zbmath.org/?q=an:1167.30005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..283K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266224500012}
\elib{https://elibrary.ru/item.asp?id=19066111}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67651061894}
Linking options:
  • https://www.mathnet.ru/eng/sm3885
  • https://doi.org/10.1070/SM2009v200n02ABEH003996
  • https://www.mathnet.ru/eng/sm/v200/i2/p129
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1172
    Russian version PDF:378
    English version PDF:24
    References:102
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024