Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 2, Pages 261–282
DOI: https://doi.org/10.1070/SM2009v200n02ABEH003995
(Mi sm3922)
 

Conditions for the invertibility of the nonlinear difference operator $(\mathscr Rx)(n)=H(x(n),x(n+1))$, $n\in\mathbb Z$, in the space of bounded number sequences

V. E. Slyusarchuk

Ukranian State Academy of Water Economy
References:
Abstract: Necessary and sufficient conditions are found for the invertibility of the nonlinear difference operator
$$ (\mathscr Rx)(n)=H(x(n),x(n+1)),\qquad n\in\mathbb Z, $$
in the space of bounded two-sided number sequences. Here $H\colon \mathbb R^2\to \mathbb R $ is a continuous function.
Bibliography: 29 titles.
Keywords: invertibility of a nonlinear operator, telegraph equations.
Received: 05.07.2007 and 15.08.2008
Bibliographic databases:
UDC: 517.988.6
MSC: Primary 47B39, 35L60; Secondary 39A70
Language: English
Original paper language: Russian
Citation: V. E. Slyusarchuk, “Conditions for the invertibility of the nonlinear difference operator $(\mathscr Rx)(n)=H(x(n),x(n+1))$, $n\in\mathbb Z$, in the space of bounded number sequences”, Sb. Math., 200:2 (2009), 261–282
Citation in format AMSBIB
\Bibitem{Sly09}
\by V.~E.~Slyusarchuk
\paper Conditions for the invertibility of the nonlinear difference operator
$(\mathscr Rx)(n)=H(x(n),x(n+1))$, $n\in\mathbb Z$, in the space of bounded number sequences
\jour Sb. Math.
\yr 2009
\vol 200
\issue 2
\pages 261--282
\mathnet{http://mi.mathnet.ru//eng/sm3922}
\crossref{https://doi.org/10.1070/SM2009v200n02ABEH003995}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2503140}
\zmath{https://zbmath.org/?q=an:1181.47033}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200..261S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266224500011}
\elib{https://elibrary.ru/item.asp?id=19066110}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67650938297}
Linking options:
  • https://www.mathnet.ru/eng/sm3922
  • https://doi.org/10.1070/SM2009v200n02ABEH003995
  • https://www.mathnet.ru/eng/sm/v200/i2/p107
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:572
    Russian version PDF:189
    English version PDF:26
    References:90
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024