Abstract:
Conditions are obtained for the existence of “exterior” asymptotics for orthogonal polynomials. In particular, it is shown that if ρ′>0 almost everywhere on the interval [−1,1] (ρ(x) is a nondecreasing function on [−1,1]), then for the corresponding orthonormal polynomials the relation Pn+1(z)Pn(z)⇉z+√z2−1 holds on compact subsets of C∖[−1,1]. The branch of the square root is chosen so that |z+√z2−1|>1 in the region described.
Bibliography: 6 titles.
\Bibitem{Rak77}
\by E.~A.~Rakhmanov
\paper On the asymptotics of the ratio of orthogonal polynomials
\jour Math. USSR-Sb.
\yr 1977
\vol 32
\issue 2
\pages 199--213
\mathnet{http://mi.mathnet.ru/eng/sm2806}
\crossref{https://doi.org/10.1070/SM1977v032n02ABEH002377}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=445212}
\zmath{https://zbmath.org/?q=an:0373.30034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977GH22400002}
This publication is cited in the following 141 articles:
J S Dehesa, “Rydberg atoms in D dimensions: entanglement, entropy and complexity”, J. Phys. A: Math. Theor., 57:14 (2024), 143001
A. I. Aptekarev, “Weak and Strong Asymptotics of Orthogonal Polynomials with Varying Weight”, J Math Sci, 278:2 (2024), 211
V. I. Buslaev, “Multipoint Geronimus and Schur parameters of measures on a circle and on a line”, Sb. Math., 215:8 (2024), 1007–1042
Nahual Sobrino, Jesus S. Dehesa, “Parameter andqasymptotics of Lq‐norms of hypergeometric orthogonal polynomials”, Int J of Quantum Chemistry, 123:2 (2023)
Fabrice Gamboa, Jan Nagel, Alain Rouault, “Sum rules via large deviations: Extension to polynomial potentials and the multi-cut regime”, Journal of Functional Analysis, 282:3 (2022), 109307
Sze-Man Ngai, Wei Tang, Anh Tran, Shuai Yuan, “Orthogonal Polynomials Defined by Self-Similar Measures with Overlaps”, Experimental Mathematics, 31:3 (2022), 1026
L.G. González Ricardo, G. López Lagomasino, S. Medina Peralta, “On the convergence of multi-level Hermite-Padé approximants”, Physica D: Nonlinear Phenomena, 440 (2022), 133487
Nahual Sobrino, Jesus S.‐Dehesa, “Algebraic and complexity‐like properties of Jacobi polynomials: Degree and parameter asymptotics”, Int J of Quantum Chemistry, 122:6 (2022)
S. P. Suetin, “Two Examples Related to Properties of Discrete Measures”, Math. Notes, 110:4 (2021), 578–582
A. I. Aptekarev, “Slabye i silnye asimptotiki ortogonalnykh mnogochlenov c «peremennym» vesom”, Posvyaschaetsya 70-letiyu prezidenta RUDN V.M. Filippova, SMFN, 67, no. 3, Rossiiskii universitet druzhby narodov, M., 2021, 427–441
Dehesa J.S., “Entropy-Like Properties and l-Q-Norms of Hypergeometric Orthogonal Polynomials: Degree Asymptotics”, Symmetry-Basel, 13:8 (2021), 1416
Jesús S Dehesa, Nahual Sobrino, “Complexity-like properties and parameter asymptotics of Lq -norms of Laguerre and Gegenbauer polynomials”, J. Phys. A: Math. Theor., 54:49 (2021), 495001
A I Aptekarev, E D Belega, J S Dehesa, “Rydberg multidimensional states: Rényi and Shannon entropies in momentum space”, J. Phys. A: Math. Theor., 54:3 (2021), 035305
Lopez-Garcia A. Lopez Lagomasino G., “Nikishin Systems on Star-Like Sets: Ratio Asymptotics of the Associated Multiple Orthogonal Polynomials, II”, J. Approx. Theory, 250 (2020), UNSP 105320
Fidalgo U. Lopez Lagomasino G. Medina Peralta S., “Asymptotic of Cauchy Biorthogonal Polynomials”, Mediterr. J. Math., 17:1 (2020), 22
B. P. Osilenker, “On Potential Functions Associated with Eigenfunctions of the Discrete Sturm–Liouville Operator”, Math. Notes, 108:6 (2020), 842–853
A. I. Aptekarev, S. A. Denisov, M. L. Yattselev, “Discrete Schrödinger Operator on a Tree, Angelesco Potentials, and Their Perturbations”, Proc. Steklov Inst. Math., 311 (2020), 1–9
Diaz-Gonzalez A. Pijeira-Cabrera H. Perez-Yzquierdo I., “Rational Approximation and Sobolev-Type Orthogonality”, J. Approx. Theory, 260 (2020), 105481
Piu Ghosh, Debraj Nath, “Complexity analysis of two families of orthogonal functions”, Int J of Quantum Chemistry, 119:17 (2019)
Maurice Duits, Rostyslav Kozhan, “Relative Szegő Asymptotics for Toeplitz Determinants”, International Mathematics Research Notices, 2019:17 (2019), 5441