|
This article is cited in 134 scientific papers (total in 134 papers)
On the asymptotics of the ratio of orthogonal polynomials. II
E. A. Rakhmanov
Abstract:
Let $\mu$ be a positive measure on the circumference $\Gamma=\{z:|z|=1\}$ and let $\mu'=\dfrac{d\mu}{d\theta}>0$ almost everywhere on $\Gamma$. Let $\Phi_n(z)=z^n+\cdots$ be the orthogonal polynomials corresponding to $\mu$, and let $a_n=-\overline{\Phi_{n+1}(0)}$ be their parameters. Then $\lim\limits_{n\to\infty}a_n=0$.
Bibliography: 5 titles.
Received: 06.01.1982
Citation:
E. A. Rakhmanov, “On the asymptotics of the ratio of orthogonal polynomials. II”, Math. USSR-Sb., 46:1 (1983), 105–117
Linking options:
https://www.mathnet.ru/eng/sm2240https://doi.org/10.1070/SM1983v046n01ABEH002749 https://www.mathnet.ru/eng/sm/v160/i1/p104
|
Statistics & downloads: |
Abstract page: | 720 | Russian version PDF: | 154 | English version PDF: | 18 | References: | 50 |
|