Abstract:
The object of the present work is the imbedding of the spectral theory for the dissipative Schrödinger operator L with absolutely continuous spectrum acting in the Hilbert space H=L2(R3) in the spectral theory of a model operator and the proof of the theorem on expansion in terms of eigenfunctions. The imbedding mentioned is achieved by constructing a selfadjoint dilation L of the operator L. In the so-called incoming spectral representation of this dilation the operator becomes the corresponding model operator. Next, a system of eigenfunctions of the dilation – the “radiating” eigenfunctions – is constructed. From these a canonical system of eigenfunctions for the absolutely continuous spectrum of the operator and its spectral projections are obtained by “orthogonal projection” onto H.
Bibliography: 22 titles.
Citation:
B. S. Pavlov, “Selfadjoint dilatation of the dissipative Shrödinger operator and its resolution in terms of eigenfunctions”, Math. USSR-Sb., 31:4 (1977), 457–478
\Bibitem{Pav77}
\by B.~S.~Pavlov
\paper Selfadjoint dilatation of the dissipative Shr\"odinger operator and its resolution in terms of eigenfunctions
\jour Math. USSR-Sb.
\yr 1977
\vol 31
\issue 4
\pages 457--478
\mathnet{http://mi.mathnet.ru/eng/sm2695}
\crossref{https://doi.org/10.1070/SM1977v031n04ABEH003716}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=510053}
\zmath{https://zbmath.org/?q=an:0356.47007|0388.47003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977GB39600003}
Linking options:
https://www.mathnet.ru/eng/sm2695
https://doi.org/10.1070/SM1977v031n04ABEH003716
https://www.mathnet.ru/eng/sm/v144/i4/p511
This publication is cited in the following 49 articles:
Kirill D. Cherednichenko, Yulia Yu. Ershova, Sergey N. Naboko, “Functional model for generalised resolvents and its application to time-dispersive media”, Anal.Math.Phys., 14:6 (2024)
St. Petersburg Math. J., 35:1 (2024), 25–59
St. Petersburg Math. J., 35:1 (2024), 217–232
Sergio Albeverio, Volodymyr Derkach, Mark Malamud, Operator Theory: Advances and Applications, 291, From Complex Analysis to Operator Theory: A Panorama, 2023, 75
D. V. Tretyakov, Yu. L. Kudryashov, “On a General Approach to Construction of a Self-Adjoint Dilation for a Dissipative Operator”, J Math Sci, 268:6 (2022), 816
D. V. Tretyakov, Yu. L. Kudryashov, “Ob obschem podkhode k postroeniyu samosopryazhennoi dilatatsii dissipativnogo operatora”, Issledovaniya po lineinym operatoram i teorii funktsii. 49, Zap. nauchn. sem. POMI, 503, POMI, SPb., 2021, 121–136
Yu. L. Kudryashov, “Dilatatsii lineinykh operatorov”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 66, no. 2, Rossiiskii universitet druzhby narodov, M., 2020, 209–220
B. P. Allahverdiev, H. Tuna, “Dissipative Dirac operator with general boundary conditions on time scales”, Ukr. Mat. Zhurn., 72:5 (2020)
B. P. Allahverdiev, H. Tuna, “Dissipative Dirac Operator with General Boundary Conditions on Time Scales”, Ukr Math J, 72:5 (2020), 671
Yu. M. Arlinskiǐ, “Compressed Resolvents, Schur Functions, Nevanlinna Families and Their Transformations”, Complex Anal. Oper. Theory, 14:6 (2020)
Bilender P. Allahverdiev, Hüseyin Tuna, “Dissipative q-Dirac operator with general boundary conditions”, Quaestiones Mathematicae, 41:2 (2018), 239
Aytekin Ery{\i}lmaz, Hüseyin Tuna, “Spectral analysis of dissipative fractional Sturm–Liouville operators”, Georgian Mathematical Journal, 24:3 (2017), 351
Royer J., “Mourre's commutators method for a dissipative form perturbation”, J. Operat. Theor., 76:2 (2016), 351–385
Y. Strauss, “A modified Lax-Phillips scattering theory for quantum mechanics”, J. Math. Phys, 56:7 (2015), 073501
Wang X.P., Zhu L., “On the Wave Operator for Dissipative Potentials with Small Imaginary Part”, Asymptotic Anal., 86:1 (2014), 49–57
Aytekin Eryilmaz, Hüseyin Tuna, “Spectral theory of dissipative q-Sturm-Liouville problems”, Studia Scientiarum Mathematicarum Hungarica, 51:3 (2014), 366
Hüseyin Tuna, “On spectral properties of dissipative fourth order boundary-value problem with a spectral parameter in the boundary condition”, Applied Mathematics and Computation, 219:17 (2013), 9377
Hüseyin Tuna, Aytekin Ery{\i}lmaz, “Dissipative Sturm-Liouville Operators with Transmission Conditions”, Abstract and Applied Analysis, 2013 (2013), 1
Aytekin Ery{\i}lmaz, “Spectral Analysis of -Sturm-Liouville Problem with the Spectral Parameter in the Boundary Condition”, Journal of Function Spaces and Applications, 2012 (2012), 1
Julien Royer, “Limiting Absorption Principle for the Dissipative Helmholtz Equation”, Comm. in Partial Differential Equations, 35:8 (2010), 1458