Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1977, Volume 31, Issue 4, Pages 445–455
DOI: https://doi.org/10.1070/SM1977v031n04ABEH003715
(Mi sm2690)
 

This article is cited in 3 scientific papers (total in 3 papers)

On solutions of equations of infinite order in the real domain

V. V. Napalkov
References:
Abstract: A homogeneous partial differential equation of infinite order with constant coefficients of the form
\begin{equation} L[y]\equiv\sum_{|\alpha|\geqslant0}a_\alpha\frac{\partial^{|\alpha|}}{\partial x^\alpha}\,y(x)=0,\qquad\alpha=(\alpha_1,\dots,\alpha_n), \end{equation}
is considered, where $y(x)$ is an infinitely differentiate function that is defined on a convex domain $\Omega\subset R^n$ and satisfies the estimate
$$ \max\biggl|\frac{\partial^{|\alpha|}y(x)}{\partial x^\alpha}\biggr|\leqslant Nh^{|\alpha|}M_{|\alpha|},\qquad N=N(K,y),\quad h=h(K,y), $$
on every compact set $K\Subset\Omega$. It is shown under certain conditions on the sequence $M_{|\alpha|}$ that every solution of equation (1) can be approximated by the exponential solutions of this equation.
Bibliography: 12 titles.
Received: 20.04.1976
Bibliographic databases:
UDC: 517.9
MSC: 35E99, 35A35
Language: English
Original paper language: Russian
Citation: V. V. Napalkov, “On solutions of equations of infinite order in the real domain”, Math. USSR-Sb., 31:4 (1977), 445–455
Citation in format AMSBIB
\Bibitem{Nap77}
\by V.~V.~Napalkov
\paper On solutions of equations of infinite order in the real domain
\jour Math. USSR-Sb.
\yr 1977
\vol 31
\issue 4
\pages 445--455
\mathnet{http://mi.mathnet.ru//eng/sm2690}
\crossref{https://doi.org/10.1070/SM1977v031n04ABEH003715}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=454275}
\zmath{https://zbmath.org/?q=an:0353.35024|0386.35013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977GB39600002}
Linking options:
  • https://www.mathnet.ru/eng/sm2690
  • https://doi.org/10.1070/SM1977v031n04ABEH003715
  • https://www.mathnet.ru/eng/sm/v144/i4/p499
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024