1. Hüseyin Tuna, Aytekin Ery{\i}lmaz, “Dissipative Sturm-Liouville Operators with Transmission Conditions”, Abstract and Applied Analysis, 2013 (2013), 1  crossref
  2. Aytekin Ery{\i}lmaz, “Spectral Analysis of -Sturm-Liouville Problem with the Spectral Parameter in the Boundary Condition”, Journal of Function Spaces and Applications, 2012 (2012), 1  crossref
  3. Julien Royer, “Limiting Absorption Principle for the Dissipative Helmholtz Equation”, Comm. in Partial Differential Equations, 35:8 (2010), 1458  crossref  mathscinet  zmath
  4. Kiselev A.V., Naboko S., “Nonself-Adjoint Operators with Almost Hermitian Spectrum: Cayley Identity and Some Questions of Spectral Structure”, Ark. Mat., 47:1 (2009), 91–125  crossref  mathscinet  zmath  isi  elib
  5. Mitsuteru Kadowaki, Hideo Nakazawa, Kazuo Watanabe, 186, Methods of Spectral Analysis in Mathematical Physics, 2009, 241  crossref
  6. M. Yakít Ongun, Bilender P. Allahverdiev, “A completeness theorem for a dissipative Schrödinger problem with the spectral parameter in the boundary condition”, Math Nachr, 281:4 (2008), 541  crossref  mathscinet  zmath  isi  elib
  7. Ryzhov V., “Functional Model of a Closed Non-Selfadjoint Operator”, Integr. Equ. Oper. Theory, 60:4 (2008), 539–571  crossref  mathscinet  zmath  isi  elib
  8. M. Yak{\i}t Ongun, “Spectral analysis of nonselfadjoint Schrödinger problem with eigenparameter in the boundary condition”, Sci China Ser A, 50:2 (2007), 217  crossref  mathscinet  zmath  isi
  9. Neidhardt H., Rehberg J., “Scattering Matrix, Phase Shift, Spectral Shift and Trace Formula for One-Dimensional Dissipative Schrodinger-Type Operators”, Integr. Equ. Oper. Theory, 58:3 (2007), 407–431  crossref  mathscinet  zmath  isi
  10. Ryzhov V., “Functional Model of a Class of Non-Selfadjoint Extensions of Symmetric Operators”, Operator Theory, Analysis and Mathematical Physics, Operator Theory : Advances and Applications, 174, ed. Janas J. Kurasov P. Laptev A. Naboko S. Stolz G., Birkhauser Verlag Ag, 2007, 117–158  crossref  mathscinet  zmath  isi
  11. Kiselev A., Naboko S., “Nonself-Adjoint Operators with Almost Hermitian Spectrum: Matrix Model. I”, J. Comput. Appl. Math., 194:1 (2006), 115–130  crossref  mathscinet  zmath  adsnasa  isi  elib
  12. R. V. Romanov, “On instability of the absolutely continuous spectrum of dissipative Schrödinger operators and Jacobi matrices”, St. Petersburg Math. J., 17:2 (2006), 325–341  mathnet  crossref  mathscinet  zmath  elib
  13. Boris Pavlov, Spectral Methods for Operators of Mathematical Physics, 2004, 163  crossref
  14. Roman Romanov, Spectral Methods for Operators of Mathematical Physics, 2004, 179  crossref
  15. Hans-Christoph Kaiser, Hagen Neidhardt, Joachim Rehberg, “Macroscopic current induced boundary conditions for Schrödinger-type operators”, Integr equ oper theory, 45:1 (2003), 39  crossref  mathscinet  zmath  isi
  16. Baro M., Neidhardt H., “Dissipative Schrodinger-Type Operators as a Model for Generation and Recombination”, J. Math. Phys., 44:6 (2003), 2373–2401  crossref  mathscinet  zmath  adsnasa  isi
  17. Kaiser H., Neidhardt H., Rehberg J., “On 1-Dimensional Dissipative Schrodinger-Type Operators their Dilations and Eigenfunction Expansions”, Math. Nachr., 252 (2003), 51–69  crossref  mathscinet  zmath  isi
  18. S. A. Stepin, “Wave operators for the linearized Boltzmann equation in one-speed transport theory”, Sb. Math., 192:1 (2001), 141–162  mathnet  crossref  crossref  mathscinet  zmath  isi
  19. Naboko S., Romanov R., “Spectral Singularities, Szokefalvi-Nagy-Foias Functional Model and the Spectral Analysis of the Boltzmann Operator”, Recent Advances in Operator Theory and Related Topics: the Bela Szokefalvi-Nagy Memorial Volume, Operator Theory : Advances and Applications, 127, eds. Kerchy L., Foias C., Gohberg I., Langer H., Birkhauser Verlag Ag, 2001, 473–490  mathscinet  zmath  isi
  20. S. Naboko, R. Romanov, Recent Advances in Operator Theory and Related Topics, 2001, 473  crossref
Previous
1
2
3
Next