JavaScript is disabled in your browser. Please switch it on to enable full functionality of the website
Li, Chuanzhong
Statistics Math-Net.Ru
Total publications:
19
Scientific articles:
19
Number of views:
This page: 2341 Abstract pages: 3145 Full texts: 673 References: 691
Professor
Doctor of physico-mathematical sciences
E-mail:
email
Keywords:
mathematical physics,
solitons and integrable systems.
Subject:
mathematical physics, integrable systems.
Main publications:
Chuanzhong Li, Jingsong He, Ke Wu, etal,, “Tau function and Hirota bilinear equations for extended bigraded Toda hierarchy”, Journal of Mathematical Physics , 51 :043514 (2010)
https://www.mathnet.ru/eng/person74026
List of publications on Google Scholar
List of publications on ZentralBlatt
Publications in Math-Net.Ru
Citations
2024
1.
Zheng Wang, Chuanzhong Li, “On noncommutative modified KP systems”, TMF , 221 :2 (2024), 331–352 ; Theoret. and Math. Phys. , 221 :2 (2024), 1882–1900
2.
Lin Sun, Chuanzhong Li, Ming Chen, Wei Liu, “Gauge transformations between three-component KP and three-component mKP hierarchies”, TMF , 220 :3 (2024), 500–511 ; Theoret. and Math. Phys. , 220 :3 (2024), 1486–1495
2023
3.
Jianduo Yu, HaiFeng Wang, Chuanzhong Li, “A type of multicomponent nonisospectral generalized nonlinear Schrödinger hierarchies”, TMF , 215 :3 (2023), 437–464 ; Theoret. and Math. Phys. , 215 :3 (2023), 837–861
2
4.
Qianqian Yang, Chuanzhong Li, “Coupled KP and BKP hierarchies and the corresponding symmetric functions”, TMF , 215 :1 (2023), 16–46 ; Theoret. and Math. Phys. , 215 :1 (2023), 468–494
5.
Chuanzhong Li, “Virasoro symmetries of a coupled rational reduced 2D Toda hierarchy”, TMF , 214 :3 (2023), 347–358 ; Theoret. and Math. Phys. , 214 :3 (2023), 297–307
6.
Chuanzhong Li, Yong Zhang, Huanhe Dong, “Extended plethystic vertex operators and plethystic universal characters”, TMF , 214 :2 (2023), 276–290 ; Theoret. and Math. Phys. , 214 :2 (2023), 238–249
2022
7.
Chuanzhong Li, Qian Chao, “Symmetries of the multicomponent $q$ -KP hierarchy on a Grassmannian”, TMF , 213 :2 (2022), 214–233 ; Theoret. and Math. Phys. , 213 :2 (2022), 1495–1512
2021
8.
Zheng Wang, Chuanzhong Li, “On modified $B$ KP systems and generalizations”, TMF , 209 :3 (2021), 438–464 ; Theoret. and Math. Phys. , 209 :3 (2021), 1693–1716
2
9.
Yang Gao, Chuanzhong Li, “$q$ -Universal characters and an extension of the lattice $q$ -universal characters”, TMF , 208 :1 (2021), 51–68 ; Theoret. and Math. Phys. , 208 :1 (2021), 896–911
4
10.
Xiaojuan Duan, Chuanzhong Li, Jing Ping Wang, “Multi-component Toda lattice in centro-affine ${\mathbb R}^n$ ”, TMF , 207 :3 (2021), 347–360 ; Theoret. and Math. Phys. , 207 :3 (2021), 701–712
11.
Chuanzhong Li, “Multicomponent fractional Volterra hierarchy and its subhierarchy with Virasoro symmetry”, TMF , 207 :1 (2021), 3–22 ; Theoret. and Math. Phys. , 207 :1 (2021), 397–414
7
12.
Chuanzhong Li, “Finite-dimensional tau functions of the universal character hierarchy”, TMF , 206 :3 (2021), 368–383 ; Theoret. and Math. Phys. , 206 :3 (2021), 321–334
20
2020
13.
Ling An, Chuanzhong Li, “Virasoro symmetries of multicomponent Gelfand–Dickey systems”, TMF , 205 :1 (2020), 102–123 ; Theoret. and Math. Phys. , 205 :1 (2020), 1333–1352
1
2019
14.
Chuanzhong Li, Huijuan Zhou, “Solutions of the Frobenius coupled KP equation”, Zh. Mat. Fiz. Anal. Geom. , 15 :3 (2019), 369–378
3
15.
Chuanzhong Li, “Strongly coupled B-type universal characters and hierarchies”, TMF , 201 :3 (2019), 371–381 ; Theoret. and Math. Phys. , 201 :3 (2019), 1732–1741
12
16.
Chuanzhong Li, “Bosonic symmetries of the extended fermionic $(2N,2M)$ -Toda hierarchy”, TMF , 199 :2 (2019), 257–271 ; Theoret. and Math. Phys. , 199 :2 (2019), 695–708
1
2016
17.
Chuanzhong Li, Jingsong He, “Virasoro symmetry of the constrained multicomponent
Kadomtsev–Petviashvili hierarchy and its integrable discretization”, TMF , 187 :3 (2016), 487–504 ; Theoret. and Math. Phys. , 187 :3 (2016), 871–887
6
2015
18.
Chuanzhong Li, Jingsong He, “The extended $Z_N$ -Toda hierarchy”, TMF , 185 :2 (2015), 289–312 ; Theoret. and Math. Phys. , 185 :2 (2015), 1614–1635
38
Organisations