Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2016, Volume 187, Number 3, Pages 487–504
DOI: https://doi.org/10.4213/tmf9016
(Mi tmf9016)
 

This article is cited in 6 scientific papers (total in 6 papers)

Virasoro symmetry of the constrained multicomponent Kadomtsev–Petviashvili hierarchy and its integrable discretization

Chuanzhong Li, Jingsong He

Department of Mathematics, Ningbo University, Ningbo, China
Full-text PDF (444 kB) Citations (6)
References:
Abstract: We construct Virasoro-type additional symmetries of a kind of constrained multicomponent Kadomtsev–Petviashvili (KP) hierarchy and obtain the Virasoro flow equation for the eigenfunctions and adjoint eigenfunctions. We show that the algebraic structure of the Virasoro symmetry is retained under discretization from the constrained multicomponent KP hierarchy to the discrete constrained multicomponent KP hierarchy.
Keywords: constrained multicomponent KP hierarchy, discrete constrained multicomponent KP hierarchy, Virasoro symmetry.
Funding agency Grant number
National Natural Science Foundation of China 11201251
11571192
11271210
Zhejiang Provincial Natural Science Foundation of China LY15A010004
LY12A01007
The research of Chuanzhong Li is supported by the National Natural Science Foundation of China (Grant Nos. 11201251 and 11571192), the Zhejiang Provincial Natural Science Foundation (Grant Nos. LY15A010004 and LY12A01007), and the Natural Science Foundation of Ningbo (Grant No. 2015A610157).} \footnotetext[0]{\small The research of Jingsong He is supported by the National Natural Science Foundation of China (Grant No. 11271210) and the K. C. Wong Magna Fund in Ningbo University.
Received: 28.07.2015
English version:
Theoretical and Mathematical Physics, 2016, Volume 187, Issue 3, Pages 871–887
DOI: https://doi.org/10.1134/S0040577916060064
Bibliographic databases:
MSC: 37K05, 37K10, 37K40
Language: Russian
Citation: Chuanzhong Li, Jingsong He, “Virasoro symmetry of the constrained multicomponent Kadomtsev–Petviashvili hierarchy and its integrable discretization”, TMF, 187:3 (2016), 487–504; Theoret. and Math. Phys., 187:3 (2016), 871–887
Citation in format AMSBIB
\Bibitem{LiHe16}
\by Chuanzhong~Li, Jingsong~He
\paper Virasoro symmetry of the~constrained multicomponent
Kadomtsev--Petviashvili hierarchy and its integrable discretization
\jour TMF
\yr 2016
\vol 187
\issue 3
\pages 487--504
\mathnet{http://mi.mathnet.ru/tmf9016}
\crossref{https://doi.org/10.4213/tmf9016}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3535391}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016TMP...187..871L}
\elib{https://elibrary.ru/item.asp?id=26414441}
\transl
\jour Theoret. and Math. Phys.
\yr 2016
\vol 187
\issue 3
\pages 871--887
\crossref{https://doi.org/10.1134/S0040577916060064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000379309300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977134588}
Linking options:
  • https://www.mathnet.ru/eng/tmf9016
  • https://doi.org/10.4213/tmf9016
  • https://www.mathnet.ru/eng/tmf/v187/i3/p487
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024