Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2023, Volume 215, Number 3, Pages 437–464
DOI: https://doi.org/10.4213/tmf10423
(Mi tmf10423)
 

This article is cited in 2 scientific papers (total in 2 papers)

A type of multicomponent nonisospectral generalized nonlinear Schrödinger hierarchies

Jianduo Yua, HaiFeng Wangb, Chuanzhong Lic

a School of Mathematics and Statistics, Ningbo University, Ningbo, China
b School of Science, Jimei University, Xiamen, China
c College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, China
Full-text PDF (448 kB) Citations (2)
References:
Abstract: We introduce a Lie algebra $A_1$ with an arbitrary constant $\alpha$ that can be used to solve nonisospectral problems. For a given higher-dimensional Lie algebra, we introduce two new classes of higher-dimensional Lie algebras extended by $A_1$. By solving the extended nonisospectral zero-curvature equations that correspond to nonisospectral problems, we derive several multicomponent nonisospectral hierarchies. For one of them, with the aid of the $Z^\varepsilon_N$-trace identity and given the Lax pairs, we obtain the bi-Hamilton structures.
Keywords: multicomponent nonisospectral hierarchy, $Z^\varepsilon_N$-trace identity, bi-Hamiltonian structure, nonisospectral problem.
Funding agency Grant number
National Natural Science Foundation of China 12071179
Scientific Research Start-Up Foundation of Jimei University ZQ2022024
Fujian Provincial Education Department JAT220172
This work was supported by the Scientific Research Start-Up Foundation of Jimei University (grant No. ZQ2022024), the Fujian Provincial Education Department (grant No. JAT220172), and the National Natural Science Foundation of China (grant No. 12071179).
Received: 08.12.2022
Revised: 08.12.2022
English version:
Theoretical and Mathematical Physics, 2023, Volume 215, Issue 3, Pages 837–861
DOI: https://doi.org/10.1134/S0040577923060077
Bibliographic databases:
Document Type: Article
MSC: 35Q55, 37K30
Language: Russian
Citation: Jianduo Yu, HaiFeng Wang, Chuanzhong Li, “A type of multicomponent nonisospectral generalized nonlinear Schrödinger hierarchies”, TMF, 215:3 (2023), 437–464; Theoret. and Math. Phys., 215:3 (2023), 837–861
Citation in format AMSBIB
\Bibitem{YuWanLi23}
\by Jianduo~Yu, HaiFeng~Wang, Chuanzhong~Li
\paper A~type of multicomponent nonisospectral generalized nonlinear Schr\"{o}dinger hierarchies
\jour TMF
\yr 2023
\vol 215
\issue 3
\pages 437--464
\mathnet{http://mi.mathnet.ru/tmf10423}
\crossref{https://doi.org/10.4213/tmf10423}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4602496}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023TMP...215..837Y}
\transl
\jour Theoret. and Math. Phys.
\yr 2023
\vol 215
\issue 3
\pages 837--861
\crossref{https://doi.org/10.1134/S0040577923060077}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85163287936}
Linking options:
  • https://www.mathnet.ru/eng/tmf10423
  • https://doi.org/10.4213/tmf10423
  • https://www.mathnet.ru/eng/tmf/v215/i3/p437
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:124
    Full-text PDF :8
    Russian version HTML:73
    References:22
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024