|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
M. M. Kokurin, “Improved accuracy estimation of the Tikhonov method for ill-posed optimization problems in Hilbert space”, Zh. Vychisl. Mat. Mat. Fiz., 63:4 (2023), 548–556 ; Comput. Math. Math. Phys., 63:4 (2023), 519–527 |
|
2022 |
2. |
M. M. Kokurin, S. I. Piskarev, “A finite difference scheme on a graded mesh for solving Cauchy problems with a fractional Caputo derivative in a Banach space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 11, 38–51 ; Russian Math. (Iz. VUZ), 66:11 (2022), 33–45 |
3. |
M. M. Kokurin, “A posteriori stopping in iteratively regularized Gauss–Newton type methods for approximating quasi-solutions of irregular operator equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 2, 29–42 ; Russian Math. (Iz. VUZ), 66:2 (2022), 24–35 |
|
2021 |
4. |
M. M. Kokurin, “Accuracy estimation for a class of iteratively regularized Gauss–Newton methods with a posteriori stopping rule”, Zh. Vychisl. Mat. Mat. Fiz., 61:12 (2021), 1974–1985 ; Comput. Math. Math. Phys., 61:12 (2021), 1931–1942 |
|
2020 |
5. |
M. M. Kokurin, “Discrete approximation of solutions of the Cauchy problem for a linear homogeneous differential-operator equation with a fractional Caputo derivative in a Banach space”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 175 (2020), 79–104 |
6. |
M. M. Kokurin, “Uniformly a posteriori error estimates for regularizing algorithms”, Zh. Vychisl. Mat. Mat. Fiz., 60:7 (2020), 1281–1288 ; Comput. Math. Math. Phys., 60:7 (2020), 1240–1247 |
7. |
A. B. Bakushinskii, M. Yu. Kokurin, M. M. Kokurin, “Direct and converse theorems for iterative methods of solving irregular operator equations and finite difference methods for solving ill-posed Cauchy problems”, Zh. Vychisl. Mat. Mat. Fiz., 60:6 (2020), 939–962 ; Comput. Math. Math. Phys., 60:6 (2020), 915–937 |
5
|
|
2019 |
8. |
M. M. Kokurin, “Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 10, 46–61 ; Russian Math. (Iz. VUZ), 63:10 (2019), 40–54 |
1
|
|
2017 |
9. |
M. M. Kokurin, “Rate of convergence and error estimates for finite-difference schemes of solving linear ill-posed Cauchy problems of the second order”, Num. Meth. Prog., 18:4 (2017), 322–347 |
2
|
|
2015 |
10. |
M. M. Kokurin, “Necessary and sufficient conditions for the polynomial convergence of the quasi-reversibility and finite-difference methods for an ill-posed Cauchy problem with exact data”, Zh. Vychisl. Mat. Mat. Fiz., 55:12 (2015), 2027–2041 ; Comput. Math. Math. Phys., 55:12 (2015), 1986–2000 |
7
|
|
2014 |
11. |
M. M. Kokurin, “Difference schemes for solving the Cauchy problem for a second-order operator differential equation”, Zh. Vychisl. Mat. Mat. Fiz., 54:4 (2014), 569–584 ; Comput. Math. Math. Phys., 54:4 (2014), 569–584 |
3
|
|
2013 |
12. |
M. M. Kokurin, “The uniqueness of a solution to the inverse Cauchy problem for a fractional differential equation in a Banach space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 12, 19–35 ; Russian Math. (Iz. VUZ), 57:12 (2013), 16–30 |
9
|
13. |
M. M. Kokurin, “Improvement of the rate of convergence estimates for some classes of difference schemes for solving an ill-posed Cauchy problem”, Num. Meth. Prog., 14:1 (2013), 58–76 |
5
|
|
2012 |
14. |
A. B. Bakushinskii, M. M. Kokurin, M. Yu. Kokurin, “On a complete discretization scheme for an ill-posed Cauchy problem in a Banach space”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012), 96–108 ; Proc. Steklov Inst. Math. (Suppl.), 280, suppl. 1 (2013), 53–65 |
11
|
15. |
A. B. Bakushinskii, M. M. Kokurin, M. Yu. Kokurin, “On a class of finite-difference schemes for solving ill-posed Cauchy problems in Banach spaces”, Zh. Vychisl. Mat. Mat. Fiz., 52:3 (2012), 483–498 ; Comput. Math. Math. Phys., 52:3 (2012), 411–426 |
9
|
|
Organisations |
|
|
|
|