Abstract:
We consider linear fractional differential operator equations involving Caputo derivative. The goal of this paper is to establish conditions of the unique solvability of the inverse Cauchy problem for these equations. We use properties of the Mittag-Leffler function and the calculus of sectorial operators in a Banach space. For equations with operators in a general form we obtain sufficient conditions for the unique solvability, and for equations with densely defined sectorial operators we obtain necessary and sufficient unique solvability conditions.
Citation:
M. M. Kokurin, “The uniqueness of a solution to the inverse Cauchy problem for a fractional differential equation in a Banach space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 12, 19–35; Russian Math. (Iz. VUZ), 57:12 (2013), 16–30
\Bibitem{Kok13}
\by M.~M.~Kokurin
\paper The uniqueness of a~solution to the inverse Cauchy problem for a~fractional differential equation in a~Banach space
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2013
\issue 12
\pages 19--35
\mathnet{http://mi.mathnet.ru/ivm8851}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2013
\vol 57
\issue 12
\pages 16--30
\crossref{https://doi.org/10.3103/S1066369X13120037}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84890469765}
Linking options:
https://www.mathnet.ru/eng/ivm8851
https://www.mathnet.ru/eng/ivm/y2013/i12/p19
This publication is cited in the following 9 articles:
M. M. Kokurin, “Discrete Approximation of Solutions of the Cauchy Problem for a Linear Homogeneous Differential-Operator Equation with a Caputo Fractional Derivative in a Banach Space”, J Math Sci, 272:6 (2023), 826
M. M. Kokurin, S. I. Piskarev, “A finite difference scheme on a graded mesh for solving Cauchy problems with a fractional Caputo derivative in a Banach space”, Russian Math. (Iz. VUZ), 66:11 (2022), 33–45
S. I. Piskarev, A. V. Ovchinnikov, “Attraktory, zatenenie i approksimatsiya abstraktnykh polulineinykh differentsialnykh uravnenii”, Funktsionalnyi analiz, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 189, VINITI RAN, M., 2021, 3–130
M. M. Kokurin, “Diskretnaya approksimatsiya reshenii zadachi Koshi dlya lineinogo odnorodnogo differentsialno-operatornogo uravneniya s drobnoi proizvodnoi Kaputo v banakhovom prostranstve”, Materialy XVII Vserossiiskoi molodezhnoi shkoly-konferentsii «Lobachevskie chteniya-2018», 23-28 noyabrya 2018 g., Kazan. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 175, VINITI RAN, M., 2020, 79–104
Yuan L., Cheng X., Liang K., “Solving a Backward Problem For a Distributed-Order Time Fractional Diffusion Equation By a New Adjoint Technique”, J. Inverse Ill-Posed Probl., 28:4 (2020), 471–488
Piskarev S., Siegmund S., “Approximations of Stable Manifolds in the Vicinity of Hyperbolic Equilibrium Points For Fractional Differential Equations”, Nonlinear Dyn., 95:1 (2019), 685–697
M. Yu. Kokurin, S. I. Piskarev, M. Spreafico, “Finite-Difference Methods for Fractional Differential Equations of Order 1/2”, J. Math. Sci. (N. Y.), 230:6 (2018), 950–960
M. Slodicka, K. Siskova, “An inverse source problem in a semilinear time-fractional diffusion equation”, Comput. Math. Appl., 72:6 (2016), 1655–1669
Dmitry G. Orlovsky, “Parameter determination in a differential equation of fractional order with Riemann–Liouville fractional derivative in a Hilbert space”, Zhurn. SFU. Ser. Matem. i fiz., 8:1 (2015), 55–63