Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2013, Number 12, Pages 19–35 (Mi ivm8851)  

This article is cited in 9 scientific papers (total in 9 papers)

The uniqueness of a solution to the inverse Cauchy problem for a fractional differential equation in a Banach space

M. M. Kokurin

Faculty of Physics and Mathematics, Mari State University, 1 Lenin sq., Ioshkar Ola, 424000 Russia
Full-text PDF (279 kB) Citations (9)
References:
Abstract: We consider linear fractional differential operator equations involving Caputo derivative. The goal of this paper is to establish conditions of the unique solvability of the inverse Cauchy problem for these equations. We use properties of the Mittag-Leffler function and the calculus of sectorial operators in a Banach space. For equations with operators in a general form we obtain sufficient conditions for the unique solvability, and for equations with densely defined sectorial operators we obtain necessary and sufficient unique solvability conditions.
Keywords: fractional differential equations, Caputo derivative, Banach space, inverse Cauchy problem, uniqueness of solution, ill-posed problems, Mittag-Leffler function, calculus of sectorial operators, fractional Fokker–Planck equation, subdiffusion.
Received: 31.07.2012
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2013, Volume 57, Issue 12, Pages 16–30
DOI: https://doi.org/10.3103/S1066369X13120037
Bibliographic databases:
Document Type: Article
UDC: 517.983
Language: Russian
Citation: M. M. Kokurin, “The uniqueness of a solution to the inverse Cauchy problem for a fractional differential equation in a Banach space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 12, 19–35; Russian Math. (Iz. VUZ), 57:12 (2013), 16–30
Citation in format AMSBIB
\Bibitem{Kok13}
\by M.~M.~Kokurin
\paper The uniqueness of a~solution to the inverse Cauchy problem for a~fractional differential equation in a~Banach space
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2013
\issue 12
\pages 19--35
\mathnet{http://mi.mathnet.ru/ivm8851}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2013
\vol 57
\issue 12
\pages 16--30
\crossref{https://doi.org/10.3103/S1066369X13120037}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84890469765}
Linking options:
  • https://www.mathnet.ru/eng/ivm8851
  • https://www.mathnet.ru/eng/ivm/y2013/i12/p19
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:511
    Full-text PDF :111
    References:59
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024