Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2019, Number 10, Pages 46–61
DOI: https://doi.org/10.26907/0021-3446-2019-10-46-61
(Mi ivm9506)
 

This article is cited in 1 scientific paper (total in 1 paper)

Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space

M. M. Kokurin

Mari State University, 1 Lenin sq., Yoshkar-Ola, 424000 Russia
Full-text PDF (402 kB) Citations (1)
References:
Abstract: We consider finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems with selfadjoint operators and noise-free initial data in a Hilbert space. We refine the earlier author's results on the convergence rate of the methods under investigation. We establish the sufficient conditions and the necessary conditions, close to one another, for the qualified convergence of these methods in terms of the solution's sourcewise index. We prove that the considered methods cannot converge with the polynomial rate greater than the certain limit, except for the trivial case.
Keywords: ill-posed Cauchy problem, finite difference scheme, quasi-reversibility method, convergence rate, operator calculus, selfadjoint operator, sourcewise representation, interpolation spaces.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00039_a
Ministry of Education and Science of the Russian Federation 1.5420.2017/8.9
СП-5252.2018.5
Received: 08.10.2018
Revised: 08.10.2018
Accepted: 19.12.2018
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, Volume 63, Issue 10, Pages 40–54
DOI: https://doi.org/10.3103/S1066369X19100062
Bibliographic databases:
Document Type: Article
UDC: 517.988
Language: Russian
Citation: M. M. Kokurin, “Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 10, 46–61; Russian Math. (Iz. VUZ), 63:10 (2019), 40–54
Citation in format AMSBIB
\Bibitem{Kok19}
\by M.~M.~Kokurin
\paper Conditions for the qualified convergence of finite difference methods and the quasi-reversibility method for solving linear ill-posed Cauchy problems in a Hilbert space
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2019
\issue 10
\pages 46--61
\mathnet{http://mi.mathnet.ru/ivm9506}
\crossref{https://doi.org/10.26907/0021-3446-2019-10-46-61}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2019
\vol 63
\issue 10
\pages 40--54
\crossref{https://doi.org/10.3103/S1066369X19100062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000498483400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075551349}
Linking options:
  • https://www.mathnet.ru/eng/ivm9506
  • https://www.mathnet.ru/eng/ivm/y2019/i10/p46
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :103
    References:21
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024