|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
M. S. Tikhov, “Estimating distributions from samples with random size”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2023, no. 4, 5–24 |
|
2022 |
2. |
M. S. Tikhov, “Negative binomial regression in dose-effect relationships”, Ufimsk. Mat. Zh., 14:4 (2022), 100–116 ; Ufa Math. J., 14:4 (2022), 96–112 |
3. |
M. S. Tikhov, “Negative $\lambda$-binomial regression in dose-effect relationship”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2022, no. 4, 53–75 |
1
|
|
2020 |
4. |
M. S. Tikhov, K. N. Shkileva, “Nonparametric estimation for quantile in binary regression models”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2020, no. 1, 5–19 |
1
|
|
2019 |
5. |
M. S. Tikhov, K. N. Shkileva, “A modified Reed-Muench method of estimation in dose-effect relationship”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2019, no. 4, 5–26 |
2
|
|
2018 |
6. |
M. S. Tikhov, “Fourier methods for recursive estimating of distribution function in dose-effect relationship”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2018, no. 4, 31–49 |
2
|
|
2013 |
7. |
M. S. Tikhov, “Nonparametric estimation of effective doses at quantal response”, Ufimsk. Mat. Zh., 5:2 (2013), 94–108 ; Ufa Math. J., 5:2 (2013), 94–108 |
5
|
|
2012 |
8. |
M. S. Tikhov, T. S. Borodina, “Mathematical model and computer analysis of tests for homogeneity of
“dose–effect” dependence”, Computer Research and Modeling, 4:2 (2012), 267–273 |
|
1997 |
9. |
M. S. Tikhov, “Asymptotics of statistical estimates constructed from censored samples of distributions with regularly varying tails”, Teor. Veroyatnost. i Primenen., 42:3 (1997), 531–552 ; Theory Probab. Appl., 42:3 (1998), 495–512 |
|
1992 |
10. |
M. S. Tikhov, “Asymptotics of $T$-Estimators”, Teor. Veroyatnost. i Primenen., 37:4 (1992), 658–675 ; Theory Probab. Appl., 37:4 (1993), 644–657 |
1
|
|
1991 |
11. |
M. S. Tikhov, “Reduction of test times for a censored sample”, Teor. Veroyatnost. i Primenen., 36:3 (1991), 606–609 ; Theory Probab. Appl., 36:3 (1991), 629–633 |
1
|
|
1990 |
12. |
M. S. Tikhov, “Asymptotics of the likelihood ratio based on an interval of order statistics”, Izv. Vyssh. Uchebn. Zaved. Mat., 1990, no. 7, 69–79 ; Soviet Math. (Iz. VUZ), 34:7 (1990), 80–91 |
|
1987 |
13. |
M. S. Tikhov, “Estimates of Parameters of Densities – Which are Non-Regular in the Quantile Neighborhoods – from Truncated Variation Series”, Teor. Veroyatnost. i Primenen., 32:2 (1987), 382–387 ; Theory Probab. Appl., 32:2 (1987), 353–358 |
1
|
|
1984 |
14. |
M. S. Tikhov, “On limit distributions of estimates for two-sided censored samples with a discontinuous density”, Teor. Veroyatnost. i Primenen., 29:2 (1984), 354–360 ; Theory Probab. Appl., 29:2 (1985), 363–368 |
15. |
M. S. Tikhov, “Sequentialle estimation of the shifte parameter of uniform distribution based on censored samples of the second type”, Zap. Nauchn. Sem. LOMI, 136 (1984), 183–192 |
1
|
|
1981 |
16. |
M. S. Tihov, “On the sequential estimation of the trend parameter for a diffusion-type process with quadratic and non-quadratic loss functions”, Teor. Veroyatnost. i Primenen., 26:3 (1981), 619–626 ; Theory Probab. Appl., 26:3 (1982), 607–614 |
1
|
17. |
M. S. Tikhov, “Asymptotic study of statistical estimates based on samples censored by the central and intermediate terms of a variational series”, Zap. Nauchn. Sem. LOMI, 108 (1981), 170–187 ; J. Soviet Math., 25:3 (1984), 1219–1230 |
1
|
|
1978 |
18. |
M. S. Tihov, “On optimal sequential estimation procedures for non-quadratic loss functions”, Teor. Veroyatnost. i Primenen., 23:1 (1978), 137–143 ; Theory Probab. Appl., 23:1 (1978), 132–138 |
4
|
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|