Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1981, Volume 26, Issue 3, Pages 619–626 (Mi tvp2622)  

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

On the sequential estimation of the trend parameter for a diffusion-type process with quadratic and non-quadratic loss functions

M. S. Tihov

Gorky
Full-text PDF (429 kB) Citations (1)
Abstract: We consider the problem of sequential estimation of parameter $\theta$ corresponding to the process $\xi=\{\xi_t,\ t\ge 0\}$ with a stochastic differential
$$ d\xi_t=[\theta A_1(t,\xi)+A_0(t,\xi)]dt+B(t,\xi)dw_t,\qquad \xi_0=0. $$

Theorem. If the conditions 1)–4) of this paper are fulfilled, then the sequential estimation procedure $D_H=D(\tau_H,\delta_H)$, $0<H<\infty$, where $H$ is a given constant,
\begin{gather*} \tau_H(\xi)=\inf\biggl\{t:\int_0^tA_1^2(s,\xi)B^{-2}(s,\xi)\,ds=H\biggr\},\\ \delta_H(\xi)=H^{-1}\int_0^{\tau_H(\xi)}B^{-2}(t,\xi)A_1(t,\xi)[d\xi_t-A_0(t,\xi)dt], \end{gather*}
in the class of $\mathscr D_H$-unbiased sequential estimation procedures satisfying the conditions
\begin{gather*} \mathbf P\biggl\{\int_0^{\tau} A_1^2(t,\xi)B^{-2}(t,\xi)\,dt<\infty \biggr\}= \mathbf P\biggl\{\int_0^{\tau} A_1^2(t,w)B^{-2}(t,w)\,dt<\infty \biggr\}=1,\\ \mathbf E|\delta(\xi)|^{\alpha}<\infty,\qquad \mathbf E\int_0^\tau A_1^2(t,\xi)B^{-2}(t,\xi)\,dt\le H, \end{gather*}
is optimal in the following sense:
$$ \mathbf E|\delta_H(\xi)-\theta|^{\alpha}\le\mathbf E|\delta(\xi)-\theta|^{\alpha},\qquad \alpha\ge 1. $$

In the case of nonlinear relationship between the trend parameter and parameter $\theta$ the sequential estimation procedure $D_H=D(\tau_H,\delta_H)$ is asymptotically optimal when $H\to\infty$.
Received: 16.06.1978
English version:
Theory of Probability and its Applications, 1982, Volume 26, Issue 3, Pages 607–614
DOI: https://doi.org/10.1137/1126068
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. S. Tihov, “On the sequential estimation of the trend parameter for a diffusion-type process with quadratic and non-quadratic loss functions”, Teor. Veroyatnost. i Primenen., 26:3 (1981), 619–626; Theory Probab. Appl., 26:3 (1982), 607–614
Citation in format AMSBIB
\Bibitem{Tik81}
\by M.~S.~Tihov
\paper On the sequential estimation of the trend parameter for a~diffusion-type process with quadratic and non-quadratic loss functions
\jour Teor. Veroyatnost. i Primenen.
\yr 1981
\vol 26
\issue 3
\pages 619--626
\mathnet{http://mi.mathnet.ru/tvp2622}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=627870}
\zmath{https://zbmath.org/?q=an:0488.60071|0466.60058}
\transl
\jour Theory Probab. Appl.
\yr 1982
\vol 26
\issue 3
\pages 607--614
\crossref{https://doi.org/10.1137/1126068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981PA76400017}
Linking options:
  • https://www.mathnet.ru/eng/tvp2622
  • https://www.mathnet.ru/eng/tvp/v26/i3/p619
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024