|
|
Publications in Math-Net.Ru |
Citations |
|
2022 |
1. |
B. F. Ivanov, “Complement to the Hölder inequality for multiple integrals. II”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9:4 (2022), 612–624 ; Vestn. St. Petersbg. Univ., Math., 9:4 (2022), 396–405 |
2. |
B. F. Ivanov, “Complement to the Hölder inequality for multiple integrals. I”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9:2 (2022), 255–268 ; Vestn. St. Petersbg. Univ., Math., 9:2 (2022), 255–268 |
1
|
|
2014 |
3. |
B. F. Ivanov, “Analog of an inequality of Bohr for integrals of functions from $L^{p}(R^{n})$. II”, Probl. Anal. Issues Anal., 3(21):2 (2014), 32–51 |
1
|
4. |
B. F. Ivanov, “Analog of an inequality of Bohr for integrals of functions from ${L^{p}}(R^{n})$. I”, Probl. Anal. Issues Anal., 3(21):1 (2014), 16–34 |
2
|
|
2013 |
5. |
B. F. Ivanov, “On a generalization of an inequality of Bohr”, Probl. Anal. Issues Anal., 2(20):2 (2013), 21–58 |
3
|
|
2007 |
6. |
B. F. Ivanov, Yu. I. Kadashevich, S. P. Pomytkin, “Some topics in inelastic deformation of materials”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(14) (2007), 39–44 |
1
|
|
1997 |
7. |
B. F. Ivanov, “A frequency criterion for smoothness, with respect to the parameters, of solutions of a class of linear systems”, Differ. Uravn., 33:7 (1997), 1001 ; Differ. Equ., 33:7 (1997), 1010–1011 |
1
|
8. |
B. F. Ivanov, “A frequency criterion for the boundedness of solutions of a class of linear systems”, Differ. Uravn., 33:5 (1997), 704–706 ; Differ. Equ., 33:5 (1997), 707–709 |
1
|
|
1990 |
9. |
B. F. Ivanov, “Conditions for the boundedness of solutions of some linear systems”, Differ. Uravn., 26:10 (1990), 1705–1711 ; Differ. Equ., 26:10 (1990), 1259–1264 |
|
1979 |
10. |
B. F. Ivanov, “Stability of trajectories that do not leave the neighborhood of a homoclinic curve”, Differ. Uravn., 15:8 (1979), 1411–1419 |
1
|
11. |
B. F. Ivanov, “On the question of the existence of closed trajectories in the neighborhood of a homoclinic curve”, Differ. Uravn., 15:3 (1979), 548–550 |
|
Organisations |
|
|
|
|