Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2014, Volume 3(21), Issue 2, Pages 32–51
DOI: https://doi.org/10.15393/j3.art.2014.2569
(Mi pa181)
 

This article is cited in 1 scientific paper (total in 1 paper)

Analog of an inequality of Bohr for integrals of functions from $L^{p}(R^{n})$. II

B. F. Ivanov

Saint Petersburg State Technological University of Plant Polymers, Str. Ivan Chernykh, 4, 198095 Saint Petersburg, Russia
Full-text PDF (135 kB) Citations (1)
References:
Abstract: Let $p\in(2,+\infty],$ $n\ge1$ and $\Delta=(\Delta_1,\ldots,\Delta_n),$ $\Delta_k>0,$ $1\le k\le n.$ It is proved that for functions $\gamma(t)\in L^p(R^n)$ spectrum of which is separated from each of $n$ the coordinate hyperplanes on the distance not less than $\Delta_k,$ $1\le k\le n$ respectively, the inequality is valid:
$$\left\|\int\limits_{E_t}\gamma(\tau)\,d\tau\right\| _{L^{\infty}(R^n)}\le C^n(q)\left[\prod_{k=1}^n\frac{1} {\Delta_k^{1/q}}\right]\left\|\gamma(\tau)\right\|_{L^p(R^n)},$$
where $t=(t_1,\ldots,t_n)\in R^n,$ $E_t=\{\tau\,|\,\tau=(\tau_1,\ldots,\tau_n)\in R^n,$ $\tau_j\in[0,t_j],$ if $t_j\ge0,$ and $\tau_j\in[t_j,0],$ if $t_j<0,\ 1\le j\le n\},$ and the constant $C(q)>0,$ $\displaystyle\frac{1}{p}+ \frac{1}{q}=1$ does not depend on $\gamma(\tau)$ and vector $\Delta$.
Keywords: inequality of Bohr.
Received: 14.07.2014
Bibliographic databases:
Document Type: Article
MSC: 26D99
Language: English
Citation: B. F. Ivanov, “Analog of an inequality of Bohr for integrals of functions from $L^{p}(R^{n})$. II”, Probl. Anal. Issues Anal., 3(21):2 (2014), 32–51
Citation in format AMSBIB
\Bibitem{Iva14}
\by B.~F.~Ivanov
\paper Analog of an inequality of Bohr for integrals of~functions from~$L^{p}(R^{n})$.~II
\jour Probl. Anal. Issues Anal.
\yr 2014
\vol 3(21)
\issue 2
\pages 32--51
\mathnet{http://mi.mathnet.ru/pa181}
\crossref{https://doi.org/10.15393/j3.art.2014.2569}
\elib{https://elibrary.ru/item.asp?id=22927221}
Linking options:
  • https://www.mathnet.ru/eng/pa181
  • https://www.mathnet.ru/eng/pa/v21/i2/p32
    Cycle of papers
    This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :58
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024