Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2022, Volume 9, Issue 2, Pages 255–268
DOI: https://doi.org/10.21638/spbu01.2022.207
(Mi vspua7)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Complement to the Hölder inequality for multiple integrals. I

B. F. Ivanov

St Petersburg State University of Industrial Technologies and Design, 18, ul. Bolshaya Morskaya, St Petersburg, 191186, Russian Federation
Full-text PDF (350 kB) Citations (1)
References:
Abstract: This article is the first part of the work, the main result of which is the statement that if for functions $\gamma_1 \in L^{p_1} (\mathbb{R}^n), \ldots, \gamma_m \in L^{p_m}(\mathbb{R}^n)$, where $m \geqslant 2$ and the numbers $p_1, \ldots, p_m \in (1, +\infty]$ are such that $1/p_1 + \ldots + 1/p_m<1$, a non-resonant condition is met (the concept introduced by the author for functions from $L^{p} (\mathbb{R}^n), p \in (1, +\infty])$, then $\sup_{a,b\in \mathbb{R}^n}|\int\limits_{[a,b]} \prod_{k=1}^m[\gamma_k(\tau) + \Delta\gamma_k(\tau)]d\tau|\leqslant C\prod_{k=1}^m||\gamma_k + \Delta\gamma_k||_{L_{h_k}^{p_k}(\mathbb{R}^n)}$, where $[a, b]$ is an $n$-dimensional parallelepiped, the constant $C > 0$ does not depend on functions $\Delta\gamma_k\in L_{h_k}^{p_k}(\mathbb{R}^n)$, and $L_{h_k}^{p_k}(\mathbb{R}^n) \in L^{p_k}(\mathbb{R}^n), 1\leqslant k\leqslant m$, are specially constructed normalized spaces. In the article, for any spaces $L^p(\mathbb{R}^n)$, $p_0$, $p \in (1,+\infty]$ and any function $\gamma \in L^{p_0} (\mathbb{R}^n)$ the concept of a set of resonant points of a function $\gamma$ with respect to the $L^p(\mathbb{R}^n)$ is introduced. This set is a subset of ${ \mathbb{R}^1 \cup {\infty}}^n$ for any trigonometric polynomial of n variables with respect to any $L^p(\mathbb{R}^n)$ represents the spectrum of the polynomial in question. Theorems are written on the representation of each function $\gamma \in L^{p_0}(\mathbb{R}^n)$ with a nonempty resonant set as the sum of two functions such that the first of them belongs to the $L^{p_0}(\mathbb{R}^n) \cap L^q(\mathbb{R}^n)$, $1/p + 1/q = 1$, and the carrier of the Fourier transform of the second is centered in the neighborhood of the resonant set.
Keywords: the Holder inequality.
Received: 20.10.2021
Revised: 30.11.2021
Accepted: 02.12.2021
English version:
Vestnik St. Petersburg University, Mathematics, 2022, Volume 9, Issue 2, Pages 255–268
DOI: https://doi.org/10.1134/S1063454122020066
Document Type: Article
UDC: 517
MSC: 26D15
Language: Russian
Citation: B. F. Ivanov, “Complement to the Hölder inequality for multiple integrals. I”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 9:2 (2022), 255–268; Vestn. St. Petersbg. Univ., Math., 9:2 (2022), 255–268
Citation in format AMSBIB
\Bibitem{Iva22}
\by B.~F.~Ivanov
\paper Complement to the Hölder inequality for multiple integrals. I
\jour Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
\yr 2022
\vol 9
\issue 2
\pages 255--268
\mathnet{http://mi.mathnet.ru/vspua7}
\crossref{https://doi.org/10.21638/spbu01.2022.207}
\transl
\jour Vestn. St. Petersbg. Univ., Math.
\yr 2022
\vol 9
\issue 2
\pages 255--268
\crossref{https://doi.org/10.1134/S1063454122020066}
Linking options:
  • https://www.mathnet.ru/eng/vspua7
  • https://www.mathnet.ru/eng/vspua/v9/i2/p255
    Cycle of papers
    This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy
    Statistics & downloads:
    Abstract page:63
    Full-text PDF :18
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024