|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
L. D. Popov, “Barriers and symmetric regularization of the Lagrange function in the analysis of improper linear programming problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 29:3 (2023), 138–155 |
|
2022 |
2. |
L. D. Popov, “On parameter control in iterative linear programming methods based on a new class of smooth exterior penalty functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022), 191–200 |
1
|
|
2021 |
3. |
L. D. Popov, “On one method of increasing the smoothness of external penalty functions in linear and convex programming”, Trudy Inst. Mat. i Mekh. UrO RAN, 27:4 (2021), 88–101 |
1
|
|
2020 |
4. |
L. D. Popov, “On iterative methods of finding the equilibrium in the Arrow-Debreu classical model of pure exchange with multiplicative utility functions of the participants”, Trudy Inst. Mat. i Mekh. UrO RAN, 26:3 (2020), 154–170 |
|
2019 |
5. |
L. D. Popov, “On a regularization method for improper linear programs”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:1 (2019), 196–206 |
|
2018 |
6. |
L. D. Popov, “Interior Point Methods Adapted to Improper Linear Programs”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018), 208–216 ; Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S116–S124 |
|
2017 |
7. |
L. D. Popov, V. D. Skarin, “Regularization methods and issues of lexicographic correction for convex programming problems with inconsistent constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017), 214–223 |
|
2016 |
8. |
L. D. Popov, V. D. Skarin, “Duality and correction of inconsistent constraints for improper linear programming problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016), 200–211 ; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 165–176 |
2
|
|
2015 |
9. |
L. D. Popov, V. D. Skarin, “Lexicographic regularization and duality for improper linear programming problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015), 279–291 ; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 131–144 |
3
|
|
2014 |
10. |
L. D. Popov, “Experience in organizing hybrid parallel calculations in the Evtushenko–Golikov method for problems with block-angular structure”, Avtomat. i Telemekh., 2014, no. 4, 38–50 ; Autom. Remote Control, 75:4 (2014), 622–631 |
2
|
11. |
L. D. Popov, “Dual approach to the application of barrier functions for the optimal correction of improper linear programming problems of the first kind”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 231–237 ; Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 173–179 |
2
|
|
2013 |
12. |
L. D. Popov, “On the adaptation of the least squares method to improper problems of mathematical programming”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013), 247–255 |
1
|
|
2012 |
13. |
L. D. Popov, “Use of barrier functions for optimal correction of improper problems of linear programming of the 1st kind”, Avtomat. i Telemekh., 2012, no. 3, 3–11 ; Autom. Remote Control, 73:3 (2012), 417–424 |
14
|
14. |
L. D. Popov, “Iterative methods for equilibrium search in the partial Arrow–Debreu–Stone exchange model”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012), 201–207 |
1
|
15. |
I. I. Eremin, L. D. Popov, “Interior penalty functions and duality in linear programming”, Trudy Inst. Mat. i Mekh. UrO RAN, 18:3 (2012), 83–89 ; Proc. Steklov Inst. Math. (Suppl.), 283, suppl. 1 (2013), 56–63 |
5
|
|
2011 |
16. |
L. D. Popov, “Search of generalized solutions to improper linear and convex programming problems using barrier functions”, Bulletin of Irkutsk State University. Series Mathematics, 4:2 (2011), 134–146 |
1
|
|
2010 |
17. |
L. D. Popov, “Combined penalties and generalized solutions for improper problems of linear and convex programming of the first kind”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010), 217–226 |
3
|
|
2009 |
18. |
I. I. Eremin, L. D. Popov, “Fejér processes in theory and practice: recent results”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 1, 44–65 ; Russian Math. (Iz. VUZ), 53:1 (2009), 36–55 |
14
|
19. |
L. D. Popov, “Schemes of involving dual variables in inverse barrier functions for problems of linear and convex programming”, Trudy Inst. Mat. i Mekh. UrO RAN, 15:1 (2009), 195–207 ; Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S205–S217 |
1
|
|
2008 |
20. |
I. I. Eremin, L. D. Popov, “Closed Fejér cycles for incompatible systems of convex inequalities”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 1, 11–19 ; Russian Math. (Iz. VUZ), 52:1 (2008), 8–16 |
5
|
21. |
L. D. Popov, “One modification of the logarithmic barrier function method in linear and convex programming”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008), 103–114 ; Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S108–S119 |
2
|
|
2007 |
22. |
L. D. Popov, “Experience of multilevel parallelizing of the branch and bound method in discrete optimization problems”, Avtomat. i Telemekh., 2007, no. 5, 171–181 ; Autom. Remote Control, 68:5 (2007), 901–911 |
4
|
23. |
L. D. Popov, “Quadratic approximation of penalty functions for solving large-scale linear programs”, Zh. Vychisl. Mat. Mat. Fiz., 47:2 (2007), 206–221 ; Comput. Math. Math. Phys., 47:2 (2007), 200–214 |
6
|
|
2004 |
24. |
E. A. Berdnikova, I. I. Eremin, L. D. Popov, “Distributed fejer processes for systems of linear inequalities and problems of linear programming”, Avtomat. i Telemekh., 2004, no. 2, 16–32 ; Autom. Remote Control, 65:2 (2004), 168–183 |
12
|
25. |
L. D. Popov, “On schemes for the formation of a master sequence in a regularized extragradient method for solving variational inequalities”, Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 1, 70–79 ; Russian Math. (Iz. VUZ), 48:1 (2004), 67–76 |
3
|
|
2002 |
26. |
L. D. Popov, “Lexicographic variational inequalities and some applications”, Trudy Inst. Mat. i Mekh. UrO RAN, 8:1 (2002), 103–115 ; Proc. Steklov Inst. Math. (Suppl.), 2002no. , suppl. 1, S102–S115 |
2
|
|
1998 |
27. |
L. D. Popov, “On a one-stage method for solving lexicographic variational inequalities”, Izv. Vyssh. Uchebn. Zaved. Mat., 1998, no. 12, 71–81 ; Russian Math. (Iz. VUZ), 42:12 (1998), 67–76 |
8
|
28. |
L. D. Popov, “About accuracy of the solution of internal subproblems in the Hestenes–Powell method”, Trudy Inst. Mat. i Mekh. UrO RAN, 5 (1998), 381–386 |
|
1996 |
29. |
L. D. Popov, “Two new schemes of application of the projection method to the problem of finding approximative roots of monotone operators”, Trudy Inst. Mat. i Mekh. UrO RAN, 4 (1996), 337–344 |
|
1995 |
30. |
L. D. Popov, “On the application of the projection method for finding approximate roots of monotone mappings”, Izv. Vyssh. Uchebn. Zaved. Mat., 1995, no. 12, 74–80 ; Russian Math. (Iz. VUZ), 39:12 (1995), 71–77 |
1
|
31. |
L. D. Popov, “Application of the modified prox-method to the optimal linear correction of improper convex programming problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 3 (1995), 261–266 |
6
|
|
1993 |
32. |
L. D. Popov, “Approximate roots of unsolvable equations with monotone mappings in the left-hand side”, Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 12, 70–80 ; Russian Math. (Iz. VUZ), 37:12 (1993), 70–80 |
1
|
|
1986 |
33. |
L. D. Popov, “Linear correction of ill-posed convex-concave minimax problems on a maximin criterion”, Zh. Vychisl. Mat. Mat. Fiz., 26:9 (1986), 1325–1338 ; U.S.S.R. Comput. Math. Math. Phys., 26:5 (1986), 30–39 |
3
|
|
1980 |
34. |
L. D. Popov, “A modification of the Arrow–Hurwicz method for search of saddle points”, Mat. Zametki, 28:5 (1980), 777–784 ; Math. Notes, 28:5 (1980), 845–848 |
95
|
|
Presentations in Math-Net.Ru |
|
|
Organisations |
|
|
|
|