Abstract:
Logarithmic additive terms of barrier type with a penalty parameter are included into the Lagrange function of a linear programming problem. As a result, the problem of searching for saddle points of the modified Lagrangian becomes unconstrained (the saddle point is sought with respect to the whole space of primal and dual variables). Theorems on the asymptotic convergence to the desired solution and analogs of the duality theorems for the arising optimization minimax and maximin problem statements are formulated.
Keywords:
linear programming, uality, inner penalty functions.
Citation:
I. I. Eremin, L. D. Popov, “Interior penalty functions and duality in linear programming”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 83–89; Proc. Steklov Inst. Math. (Suppl.), 283, suppl. 1 (2013), 56–63
\Bibitem{ErePop12}
\by I.~I.~Eremin, L.~D.~Popov
\paper Interior penalty functions and duality in linear programming
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 3
\pages 83--89
\mathnet{http://mi.mathnet.ru/timm841}
\elib{https://elibrary.ru/item.asp?id=17937012}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 283
\issue , suppl. 1
\pages 56--63
\crossref{https://doi.org/10.1134/S0081543813090058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000327079000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887605423}
Linking options:
https://www.mathnet.ru/eng/timm841
https://www.mathnet.ru/eng/timm/v18/i3/p83
This publication is cited in the following 5 articles:
L. D. Popov, “Barery i simmetrichnaya regulyarizatsiya funktsii Lagranzha pri analize nesobstvennykh zadach lineinogo programmirovaniya”, Tr. IMM UrO RAN, 29, no. 3, 2023, 138–155
V. I. Erokhin, “O nekotorykh dostatochnykh usloviyakh razreshimosti i nerazreshimosti zadach matrichnoi korrektsii nesobstvennykh zadach lineinogo programmirovaniya”, Tr. IMM UrO RAN, 21, no. 3, 2015, 110–116
L. D. Popov, “Dual approach to the application of barrier functions for the optimal correction of improper linear programming problems of the first kind”, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 173–179
V. I. Berdyshev, V. V. Vasin, S. V. Matveev, A. A. Makhnev, Yu. N. Subbotin, N. N. Subbotina, V. N. Ushakov, M. Yu. Khachai, A. G. Chentsov, “Ivan Ivanovich Eremin”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 1–8
A. I. Golikov, Yu. G. Evtushenko, “Generalized Newton method for linear optimization problems with inequality constraints”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 96–107