Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2008, Volume 14, Number 2, Pages 103–114 (Mi timm28)  

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical Programming

One modification of the logarithmic barrier function method in linear and convex programming

L. D. Popov
Full-text PDF (309 kB) Citations (2)
References:
Abstract: A novel modification of the logarithmic barrier function method is introduced for solving problems of linear and convex programming. The modification is based on a parametric shifting of the constraints of the original problem, similarly to what was done in the method of Wierzbicki–Hestenes–Powell multipliers for the usual quadratic penalty function (this method is also known as the method of modified Lagrange functions). The new method is described, its convergence is proved, and results of numerical experiments are given.
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2008, Volume 263, Issue 2, Pages S108–S119
DOI: https://doi.org/10.1134/S0081543808060114
Bibliographic databases:
Document Type: Article
UDC: 519.658.4
Language: Russian
Citation: L. D. Popov, “One modification of the logarithmic barrier function method in linear and convex programming”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 2, 2008, 103–114; Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S108–S119
Citation in format AMSBIB
\Bibitem{Pop08}
\by L.~D.~Popov
\paper One modification of the logarithmic barrier function method in linear and convex programming
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 2
\pages 103--114
\mathnet{http://mi.mathnet.ru/timm28}
\zmath{https://zbmath.org/?q=an:1178.90274}
\elib{https://elibrary.ru/item.asp?id=11929733}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2008
\vol 263
\issue , suppl. 2
\pages S108--S119
\crossref{https://doi.org/10.1134/S0081543808060114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208363700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-60949099612}
Linking options:
  • https://www.mathnet.ru/eng/timm28
  • https://www.mathnet.ru/eng/timm/v14/i2/p103
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:463
    Full-text PDF :219
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024