Abstract:
A novel modification of the logarithmic barrier function method is introduced for solving problems of linear and convex programming. The modification is based on a parametric shifting of the constraints of the original problem, similarly to what was done in the method of Wierzbicki–Hestenes–Powell multipliers for the usual quadratic penalty function (this method is also known as the method of modified Lagrange functions). The new method is described, its convergence is proved, and results of numerical experiments are given.
Citation:
L. D. Popov, “One modification of the logarithmic barrier function method in linear and convex programming”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 2, 2008, 103–114; Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S108–S119
\Bibitem{Pop08}
\by L.~D.~Popov
\paper One modification of the logarithmic barrier function method in linear and convex programming
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 2
\pages 103--114
\mathnet{http://mi.mathnet.ru/timm28}
\zmath{https://zbmath.org/?q=an:1178.90274}
\elib{https://elibrary.ru/item.asp?id=11929733}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2008
\vol 263
\issue , suppl. 2
\pages S108--S119
\crossref{https://doi.org/10.1134/S0081543808060114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208363700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-60949099612}
Linking options:
https://www.mathnet.ru/eng/timm28
https://www.mathnet.ru/eng/timm/v14/i2/p103
This publication is cited in the following 2 articles:
Shen R., Meng Zh., Dang Ch., Jiang M., “Algorithm of Barrier Objective Penalty Function”, Numer. Funct. Anal. Optim., 38:11 (2017), 1473–1489
L. D. Popov, “Schemes of involving dual variables in inverse barrier functions for problems of linear and convex programming”, Proc. Steklov Inst. Math. (Suppl.), 265, suppl. 1 (2009), S205–S217