spectral theory,
differential operators,
delta potentials,
operator extension theory
Subject:
Spectral theory of differential operators, mathematical physic, abstract operator theory
Main publications:
I. S. Lobanov, V. Yu. Lotoreichik, I. Yu. Popov, “Otsenka snizu spektra dvumernogo operatora Shredingera s $\delta$-potentsialom na krivoi”, Teoreticheskaya i matematicheskaya fizika, 162:3 (2010), 397–407
J. Behrndt, M. Langer, I. Lobanov, V. Lotoreichik, I. Yu. Popov, “A remark on Schatten–von Neumann properties of resolvent differences of generalized Robin Laplacians on bounded domains”, Journal of Mathematical Analysis and Applications, 371:2 (2010), 750–758
P. Exner, V. Lotoreichik, M. Tater, “On resonances and bound states of Smilansky Hamiltonian”, Nanosystems: Physics, Chemistry, Mathematics, 7:5 (2016), 789–802
J. Behrndt, M. Langer, V. Lotoreichik, “Boundary triples for Schrödinger operators with singular interactions on hypersurfaces”, Nanosystems: Physics, Chemistry, Mathematics, 7:2 (2016), 290–302
V. Yu. Lotoreichik, “Note on 2D Schrödinger operators with $\delta$-interactions on angles and crossing lines”, Nanosystems: Physics, Chemistry, Mathematics, 4:2 (2013), 166–172
2010
4.
I. S. Lobanov, V. Yu. Lotoreichik, I. Yu. Popov, “Lower bound on the spectrum of the two-dimensional Schrödinger operator with a $\delta$-perturbation on a curve”, TMF, 162:3 (2010), 397–407; Theoret. and Math. Phys., 162:3 (2010), 332–340