Nanosystems: Physics, Chemistry, Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nanosystems: Physics, Chemistry, Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nanosystems: Physics, Chemistry, Mathematics, 2016, Volume 7, Issue 5, Pages 789–802
DOI: https://doi.org/10.17586/2220-8054-2016-7-5-789-802
(Mi nano285)
 

This article is cited in 5 scientific papers (total in 5 papers)

On resonances and bound states of Smilansky Hamiltonian

P. Exner, V. Lotoreichik, M. Tater

Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež, Czech Republic
Full-text PDF (515 kB) Citations (5)
Abstract: We consider the self-adjoint Smilansky Hamiltonian H$_\varepsilon$ in L$^2(\mathbb{R}^2)$ associated with the formal differential expression $-\partial^2_x-1/2(\partial^2_y+y^2)-\sqrt2\varepsilon y\delta(x)$ in the sub-critical regime, $\varepsilon\in(0,1)$. We demonstrate the existence of resonances for H$_\varepsilon$ on a countable subfamily of sheets of the underlying Riemann surface whose distance from the physical sheet is finite. On such sheets, we find resonance free regions and characterize resonances for small $\varepsilon>0$. In addition, we refine the previously known results on the bound states of H$_\varepsilon$, in the weak coupling regime $(\varepsilon\to0+)$. In the proofs we use Birman–Schwinger principle for H$_\varepsilon$, elements of spectral theory for Jacobi matrices, and the analytic implicit function theorem.
Keywords: Smilansky Hamiltonian, resonances, resonance free region, weak coupling asymptotics, Riemann surface, bound states.
Funding agency Grant number
Czech Science Foundation 1406818S
This research was supported by the Czech Science Foundation (GAČR) within the project 1406818S.
Received: 01.07.2016
Revised: 28.07.2016
Bibliographic databases:
Document Type: Article
PACS: 02.30.Tb, 03.65.Db
Language: English
Citation: P. Exner, V. Lotoreichik, M. Tater, “On resonances and bound states of Smilansky Hamiltonian”, Nanosystems: Physics, Chemistry, Mathematics, 7:5 (2016), 789–802
Citation in format AMSBIB
\Bibitem{ExnLotTat16}
\by P.~Exner, V.~Lotoreichik, M.~Tater
\paper On resonances and bound states of Smilansky Hamiltonian
\jour Nanosystems: Physics, Chemistry, Mathematics
\yr 2016
\vol 7
\issue 5
\pages 789--802
\mathnet{http://mi.mathnet.ru/nano285}
\crossref{https://doi.org/10.17586/2220-8054-2016-7-5-789-802}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000387463700002}
Linking options:
  • https://www.mathnet.ru/eng/nano285
  • https://www.mathnet.ru/eng/nano/v7/i5/p789
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Nanosystems: Physics, Chemistry, Mathematics
    Statistics & downloads:
    Abstract page:47
    Full-text PDF :12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024