Abstract:
We consider the two-dimensional Schrödinger operator with a δ-potential supported by curve. For the cases of infinite and closed finite smooth curves, we obtain lower bounds on the spectrum of the considered operator that are expressed explicitly in terms of the interaction strength and a parameter characterizing the curve geometry. We estimate the bottom of the spectrum for a piecewise smooth curve using parameters characterizing the geometry of the separate pieces. As applications of the obtained results, we consider curves with a finite number of cusps and general “leaky” quantum graph as the support of the δ-potential.
Citation:
I. S. Lobanov, V. Yu. Lotoreichik, I. Yu. Popov, “Lower bound on the spectrum of the two-dimensional Schrödinger operator with a δ-perturbation on a curve”, TMF, 162:3 (2010), 397–407; Theoret. and Math. Phys., 162:3 (2010), 332–340
\Bibitem{LobLotPop10}
\by I.~S.~Lobanov, V.~Yu.~Lotoreichik, I.~Yu.~Popov
\paper Lower bound on the~spectrum of the~two-dimensional Schr\"odinger operator with a~$\delta$-perturbation on a~curve
\jour TMF
\yr 2010
\vol 162
\issue 3
\pages 397--407
\mathnet{http://mi.mathnet.ru/tmf6477}
\crossref{https://doi.org/10.4213/tmf6477}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2682131}
\zmath{https://zbmath.org/?q=an:1196.81109}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...162..332L}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 162
\issue 3
\pages 332--340
\crossref{https://doi.org/10.1007/s11232-010-0025-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276724000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952054903}
Linking options:
https://www.mathnet.ru/eng/tmf6477
https://doi.org/10.4213/tmf6477
https://www.mathnet.ru/eng/tmf/v162/i3/p397
This publication is cited in the following 13 articles:
S Kondej, “Bound states asymptotics in the system with quantum wires in ℝ3”, J. Phys. A: Math. Theor., 56:3 (2023), 035202
Mantile A., Posilicano A., Sini M., “Self-adjoint elliptic operators with boundary conditions on not closed hypersurfaces”, J. Differ. Equ., 261:1 (2016), 1–55
Behrndt J., Exner P., Lotoreichik V., “Schrodinger Operators With Delta- and Delta `-Interactions on Lipschitz Surfaces and Chromatic Numbers of Associated Partitions”, Rev. Math. Phys., 26:8 (2014), 1450015
Lobanov I.S., Popov I.Yu., Popov A.I., Gerya T.V., “Numerical Approach To the Stokes Problem With High Contrasts in Viscosity”, Appl. Math. Comput., 235 (2014), 17–25
Behrndt J., Langer M., Lotoreichik V., “Schrodinger Operators with Delta and Delta `-Potentials Supported on Hypersurfaces”, Ann. Henri Poincare, 14:2 (2013), 385–423
Eremin D.A. Ivanov D.A. Popov I.Yu., “Regular potential approximation for $\delta$-perturbation supported by curve of the Laplace–Beltrami operator on the sphere”, Z. Anal. Anwend., 31:2 (2012), 125–137
Kaynak B.T., Turgut O.T., “A Klein-Gordon particle captured by embedded curves”, Ann. Phys., 327:11 (2012), 2605–2616
Kaynak B.T., Turgut O.T., “Singular interactions supported by embedded curves”, J. Phys. A, 45:26 (2012), 265202, 14 pp.
S.I. Popov, M.I. Gavrilov, I.Yu. Popov, 2012 Proceedings of the International Conference Days on Diffraction, 2012, 203
Cisło J., Kondej S., “Upper bound for the number of bound states induced by the curvature of singular potential”, Rep. Math. Phys., 68:2 (2011), 225–240
Eremin D.A., Popov I.Yu., “Kvantovoe koltso s provodnikom:model dvukhchastichnoi zadachi”, Nanosistemy: fizika, khimiya, matematika, 2:2 (2011), 15–31