Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 162, Number 3, Pages 397–407
DOI: https://doi.org/10.4213/tmf6477
(Mi tmf6477)
 

This article is cited in 13 scientific papers (total in 13 papers)

Lower bound on the spectrum of the two-dimensional Schrödinger operator with a $\delta$-perturbation on a curve

I. S. Lobanov, V. Yu. Lotoreichik, I. Yu. Popov

St.~Petersburg State University of Information Technologies, Mechanics, and Optics, St.~Petersburg, Russia
References:
Abstract: We consider the two-dimensional Schrödinger operator with a $\delta$-potential supported by curve. For the cases of infinite and closed finite smooth curves, we obtain lower bounds on the spectrum of the considered operator that are expressed explicitly in terms of the interaction strength and a parameter characterizing the curve geometry. We estimate the bottom of the spectrum for a piecewise smooth curve using parameters characterizing the geometry of the separate pieces. As applications of the obtained results, we consider curves with a finite number of cusps and general “leaky” quantum graph as the support of the $\delta$-potential.
Keywords: Schrödinger operator, singular potential, spectral estimate, Birman–Schwinger transformation.
Received: 01.08.2009
English version:
Theoretical and Mathematical Physics, 2010, Volume 162, Issue 3, Pages 332–340
DOI: https://doi.org/10.1007/s11232-010-0025-3
Bibliographic databases:
Language: Russian
Citation: I. S. Lobanov, V. Yu. Lotoreichik, I. Yu. Popov, “Lower bound on the spectrum of the two-dimensional Schrödinger operator with a $\delta$-perturbation on a curve”, TMF, 162:3 (2010), 397–407; Theoret. and Math. Phys., 162:3 (2010), 332–340
Citation in format AMSBIB
\Bibitem{LobLotPop10}
\by I.~S.~Lobanov, V.~Yu.~Lotoreichik, I.~Yu.~Popov
\paper Lower bound on the~spectrum of the~two-dimensional Schr\"odinger operator with a~$\delta$-perturbation on a~curve
\jour TMF
\yr 2010
\vol 162
\issue 3
\pages 397--407
\mathnet{http://mi.mathnet.ru/tmf6477}
\crossref{https://doi.org/10.4213/tmf6477}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2682131}
\zmath{https://zbmath.org/?q=an:1196.81109}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...162..332L}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 162
\issue 3
\pages 332--340
\crossref{https://doi.org/10.1007/s11232-010-0025-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276724000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952054903}
Linking options:
  • https://www.mathnet.ru/eng/tmf6477
  • https://doi.org/10.4213/tmf6477
  • https://www.mathnet.ru/eng/tmf/v162/i3/p397
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:636
    Full-text PDF :240
    References:91
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024