Sobolev spaces; fine properties of functions; exceptional sets.
Biography
June 2006 — Specialist in Mathematics (Belarusian State University, Minsk, Belarus)
December 2009 — Ph.D. Mathematics, Advisor: Veniamin G. Krotov, Dissertation Title: Generalized Sobolev spaces on metric spaces with measure: fine properties of functions (Belarusian State University, Minsk, Belarus)
September 2008 – Present — Seniour Lecturer (Belarusian State University, Minsk, Belarus).
Main publications:
E. V. Gubkina, M. A. Prokhorovich, Ya. M. Radyna, “Generalized Hajłasz–Sobolev classes on ultrametric measure spaces with doubling condition”, Siberian Math. J., 56:5 (2015), 822–826
V. G. Krotov, M. A. Prokhorovich, “Estimates for the Exceptional Lebesgue Sets of Functions from Sobolev Classes”, Springer Proceedings in Mathematics & Statistics, 25 (2013), 225–234
V. G. Krotov, M. A. Prokhorovich, “The Rate of Convergence of Steklov Means on Metric Measure Spaces and Hausdorff Dimension”, Math. Notes, 89:1 (2011), 156–159
M. A. Prokhorovich, “Hausdorff Measures and Lebesgue Points for the Sobolev Classes $W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type”, Math. Notes, 85:4 (2009), 584–589
M. A. Prokhorovich, “Capacities and Lebesgue Points for Fractional Hajlasz–Sobolev Classes on Metric Spaces with Measure”, Proceeding of the National Academy of Sciences of Belarus. Physics and Mathematics Series, 2006, no. 1, 19–23
E. V. Gubkina, E. A. Kuzmichyov, M. A. Prokhorovich, A. V. Savvateev, “«Mathematics is simple»: popularization of mathematics in Internet”, Math. Ed., 2019, no. 2(90), 46–53
2015
2.
E. V. Gubkina, M. A. Prokhorovich, Ya. M. Radyna, “Generalized Hajłasz–Sobolev classes on ultrametric measure spaces with doubling condition”, Sibirsk. Mat. Zh., 56:5 (2015), 1030–1036; Siberian Math. J., 56:5 (2015), 822–826
2013
3.
V. G. Krotov, M. A. Prokhorovich, “Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set”, Fundam. Prikl. Mat., 18:5 (2013), 145–153; J. Math. Sci., 209:1 (2015), 108–114
E. V. Gubkina, K. V. Zabello, M. A. Prokhorovich, Ya. M. Radyna, “The Luzin approximation of functions from sobolev classes on the space of a multidimensional $p$-adic argument”, PFMT, 2013, no. 2(15), 58–65
V. G. Krotov, M. A. Prokhorovich, “The Rate of Convergence of Steklov Means on Metric Measure Spaces and Hausdorff Dimension”, Mat. Zametki, 89:1 (2011), 145–148; Math. Notes, 89:1 (2011), 156–159
M. A. Prokhorovich, “Hausdorff Measures and Lebesgue Points for the Sobolev Classes $W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type”, Mat. Zametki, 85:4 (2009), 616–621; Math. Notes, 85:4 (2009), 584–589
V. G. Krotov, M. A. Prokhorovich, “The Luzin approximation of functions from the classes $W^p_\alpha$ on metric spaces with measure”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 55–66; Russian Math. (Iz. VUZ), 52:5 (2008), 47–57
M. A. Prokhorovich, “Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces”, Mat. Zametki, 82:1 (2007), 99–107; Math. Notes, 82:1 (2007), 88–95