Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Prokhorovich, Mikhail Aleksandrovich

Statistics Math-Net.Ru
Total publications: 9
Scientific articles: 8

Number of views:
This page:8627
Abstract pages:7510
Full texts:3159
References:605
Prokhorovich, Mikhail Aleksandrovich

Candidate of physico-mathematical sciences (2009)
Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
Birth date: 6.05.1984
E-mail:
Website: https://vk.com/mikhail.prokhorovich
Keywords: function spaces, analysis on metric measure spaces.
UDC: 517.5
MSC: 28A75, 28A78, 30L99, 41A65, 41A99, 42B25, 46E35

Subject:

Sobolev spaces; fine properties of functions; exceptional sets.

Biography

June 2006 — Specialist in Mathematics (Belarusian State University, Minsk, Belarus)
December 2009 — Ph.D. Mathematics, Advisor: Veniamin G. Krotov, Dissertation Title: Generalized Sobolev spaces on metric spaces with measure: fine properties of functions (Belarusian State University, Minsk, Belarus)
September 2008 – Present — Seniour Lecturer (Belarusian State University, Minsk, Belarus).

   
Main publications:
  1. E. V. Gubkina, M. A. Prokhorovich, Ya. M. Radyna, “Generalized Hajłasz–Sobolev classes on ultrametric measure spaces with doubling condition”, Siberian Math. J., 56:5 (2015), 822–826  mathnet  crossref  crossref  isi  elib  elib  scopus
  2. V. G. Krotov, M. A. Prokhorovich, “Estimates for the Exceptional Lebesgue Sets of Functions from Sobolev Classes”, Springer Proceedings in Mathematics & Statistics, 25 (2013), 225–234  crossref  mathscinet  zmath  elib  scopus
  3. V. G. Krotov, M. A. Prokhorovich, “The Rate of Convergence of Steklov Means on Metric Measure Spaces and Hausdorff Dimension”, Math. Notes, 89:1 (2011), 156–159  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
  4. M. A. Prokhorovich, “Hausdorff Measures and Lebesgue Points for the Sobolev Classes $W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type”, Math. Notes, 85:4 (2009), 584–589  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
  5. M. A. Prokhorovich, “Capacities and Lebesgue Points for Fractional Hajlasz–Sobolev Classes on Metric Spaces with Measure”, Proceeding of the National Academy of Sciences of Belarus. Physics and Mathematics Series, 2006, no. 1, 19–23  mathscinet

https://www.mathnet.ru/eng/person28439
https://scholar.google.com/citations?user=i80aJJAAAAAJ&hl=en
https://zbmath.org/authors/ai:prokhorovich.mikhail-a
https://mathscinet.ams.org/mathscinet/MRAuthorID/791212
https://elibrary.ru/author_items.asp?spin=6066-5887
https://orcid.org/0000-0001-9107-394X
https://www.scopus.com/authid/detail.url?authorId=36726342600
https://www.researchgate.net/profile/M-Prokhorovich
Full list of publications: Download file (321 kB)

Publications in Math-Net.Ru Citations
2019
1. E. V. Gubkina, E. A. Kuzmichyov, M. A. Prokhorovich, A. V. Savvateev, “«Mathematics is simple»: popularization of mathematics in Internet”, Math. Ed., 2019, no. 2(90),  46–53  mathnet
2015
2. E. V. Gubkina, M. A. Prokhorovich, Ya. M. Radyna, “Generalized Hajłasz–Sobolev classes on ultrametric measure spaces with doubling condition”, Sibirsk. Mat. Zh., 56:5 (2015),  1030–1036  mathnet  elib; Siberian Math. J., 56:5 (2015), 822–826  isi  elib  scopus
2013
3. V. G. Krotov, M. A. Prokhorovich, “Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set”, Fundam. Prikl. Mat., 18:5 (2013),  145–153  mathnet  mathscinet  elib; J. Math. Sci., 209:1 (2015), 108–114  scopus 1
4. E. V. Gubkina, K. V. Zabello, M. A. Prokhorovich, Ya. M. Radyna, “The Luzin approximation of functions from sobolev classes on the space of a multidimensional $p$-adic argument”, PFMT, 2013, no. 2(15),  58–65  mathnet 2
2011
5. V. G. Krotov, M. A. Prokhorovich, “The Rate of Convergence of Steklov Means on Metric Measure Spaces and Hausdorff Dimension”, Mat. Zametki, 89:1 (2011),  145–148  mathnet  mathscinet; Math. Notes, 89:1 (2011), 156–159  isi  scopus 7
2009
6. M. A. Prokhorovich, “Hausdorff Measures and Lebesgue Points for the Sobolev Classes $W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type”, Mat. Zametki, 85:4 (2009),  616–621  mathnet  mathscinet  zmath; Math. Notes, 85:4 (2009), 584–589  isi  scopus 10
2008
7. V. G. Krotov, M. A. Prokhorovich, “The Luzin approximation of functions from the classes $W^p_\alpha$ on metric spaces with measure”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5,  55–66  mathnet  mathscinet  zmath  elib; Russian Math. (Iz. VUZ), 52:5 (2008), 47–57 9
2007
8. M. A. Prokhorovich, “Hausdorff Dimension of Lebesgue Sets for $W^p_\alpha$ Classes on Metric Spaces”, Mat. Zametki, 82:1 (2007),  99–107  mathnet  mathscinet  elib; Math. Notes, 82:1 (2007), 88–95  isi  scopus 11

2017
9. M. A. Prokhorovich, A. V. Savvateev, “A mathematician who did not exist”, Math. Ed., 2017, no. 3(83),  68–75  mathnet

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024