|
Fundamentalnaya i Prikladnaya Matematika, 2013, Volume 18, Issue 5, Pages 145–153
(Mi fpm1546)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set
V. G. Krotov, M. A. Prokhorovich Belarusian State University, Minsk, Belarus
Abstract:
We prove that for $p>1$ and $0<\alpha<n/p$ there exists a function from the Bessel potentials class $J_\alpha(L^p(\mathbb R^n))$ such that the Hausdorff dimension of its exceptional Lebesgue set is $n-\alpha p$. We also show that such a function may be taken from the Besov class $B^\alpha_{p,q}(\mathbb R^n)$ with any $q>0$.
Citation:
V. G. Krotov, M. A. Prokhorovich, “Functions from Sobolev and Besov spaces with maximal Hausdorff dimension of the exceptional Lebesgue set”, Fundam. Prikl. Mat., 18:5 (2013), 145–153; J. Math. Sci., 209:1 (2015), 108–114
Linking options:
https://www.mathnet.ru/eng/fpm1546 https://www.mathnet.ru/eng/fpm/v18/i5/p145
|
Statistics & downloads: |
Abstract page: | 746 | Full-text PDF : | 151 | References: | 65 |
|